Контакты

Extended cell gsm как работает. Как работает радиоинтерфейс в GSM-сетях. Активация меню Netmonitor для различных моделей телефонов

Выпускаются для 4 диапазонов частот: 850 МГц, 900 МГц , 1800 МГц , 1900 МГц.

В зависимости от количества диапазонов, телефоны подразделяются на классы и вариацию частот в зависимости от региона использования.

  • Однодиапазонные - телефон может работать на одной из частот. В настоящее время не выпускаются, но существует возможность ручного выбора определённой частоты в некоторых моделях телефонов, например Motorola C115, или с помощью инженерного меню телефона.
  • Двухдиапазонные (Dual Band) - для Европы, Азии, Африки, Австралии 900/1800 и 850/1900 для Америки и Канады.
  • Трёхдиапазонные (Tri Band) - для Европы, Азии, Африки, Австралии 900/1800/1900 и 850/1800/1900 для Америки и Канады.
  • Четырехдиапазонные (Quad Band) - поддерживают все диапазоны 850/900/1800/1900.

Подсистема базовых станций

Основные источники угроз:

1. СОРМ - Система технических средств, для обеспечения функций Оперативно-Розыскных Мероприятий.

2. Поставщик услуги (Оператор Сотовой Связи)

3. Производители мобильных устройств и систем управления (Операционная Система).

4. Перехват трафика в радиоканале (комплексы перехвата: активные, полуактивные, пассивные и др. средства перехвата).

Методы защиты :

  • Динамические идентификаторы (IMSI+Ki, IMEI)
  • Принудительное шифрование в сети GSM алгоритм А5/1.
  • Политика безопасности на уровне SIM.
  • Искажение голоса
  • Подмена номера звонящего.
  • Отсутствие данных локации
  • Отсутствие биллинговых данных
  • Невозможность установления факта звонка между абонентами.

Принципы противодействия :

Чтобы установить технический контроль за мобильным телефоном или SIM-картой, необходимо знать их идентификаторы. Все сети коммуникации во всём мире контролируются государственными регуляторами и технически подключены к СОРМ (вся информация по данной системе доступна в интернете).

Для мобильного устройства основным идентификатором является IMEI (International Mobile Equipment Identity - международный идентификатор мобильного оборудования). Данный параметр передаётся в сети.

Для абонента идентификатором является IMSI (International Mobile Subscriber Identity - международный идентификатор мобильного абонента (индивидуальный номер абонента). Данный параметр передаётся в сети.

Публичный параметр MSISDN - (Mobile Subscriber Integrated Services Digital Number) - номер мобильного абонента цифровой сети с интеграцией служб для связи в стандартах GSM, UMTS и пр. Данный параметр не передаётся в сети, но сопоставим с IMSI.

Эти параметры достаточны для получения необходимой оперативной информации и использования этих данных для аналитических выводов. Имея эти идентификаторы по средствам СОРМ, комплексов перехвата и других мероприятий, можно получить следующую информацию по абоненту:

  • по IMEI можно получить все IMSI SIM карт, которые использовались в этом устройстве и как следствие все биллинговые данные по этим SIM картам (Локация, круг общения, SMS, MMS, голос, URL-адреса, логины и пароли и т.д.);
  • по IMSI можно получить все IMEI аппаратов и IMSI SIM карт, которые использовались в этих аппаратах и как следствие становятся доступными всё те же биллинговые данные, что и в предыдущем случае.

SECURE SIM не имеет биллинга ни у одного из операторов, так как не является их собственностью. SECURE SIM не имеет MSISDN в публичном доступе.

Алгоритм работы SECURE SIM и обычной SIM в сети GSM

Процедура регистрации телефона в сети и выбора соты

После каждого включения телефона происходит процедура выбора сети и регистрация абонента в этой сети.

  • После включения телефона с обычной SIM, производится сканирование частот и выбор соты с наивысшим уровнем сигнала. SECURE SIM работает только с сотой уровень сигнала, которой является второй по своему значению. Данный алгоритм обеспечивает защиту от комплексов перехвата.
  • После процедуры синхронизации происходит идентификация оборудования и аутентификация абонента в сети. Обычная SIM-карта производит процедуру аутентификации в сети оператора согласно Алгоритма А3. Данный протокол производит вычисление ключа SRES, который позволяет завершить процедуру аутентификации. Для вычисления ключа SRES в алгоритме А3 используются параметр IMSI и Ki. В обычной сим карте параметр IMSI вшит в SIM карту, и он не меняется. В SECURE SIM несколько профилей со своими парами IMSI+Ki.

Шифрование в сети GSM

Шифрование сессии обеспечивает алгоритм шифрования А5, который использует в своих вычислениях Кс(сессионный ключ). Кс в свою очередь вычисляется алгоритмом А8, который использует параметры Ki и RAND. В обычной SIM карте параметр Ki является неизменным, как и IMSI. SECURE SIM использует несколько профилей со своими парами IMSI+Ki.

Чтобы понизить уровень криптования A5/1 до A5/2 или A5/0, оператор со своей стороны или комплекс перехвата отправляет служебную команду на номер мобильного абонента MSISDN. У обычной SIM карты мобильный номер MSISDN привязан к конкретной паре IMSI+Ki и хранится у оператора эмитента. SECURE SIM не принадлежит ни одному из операторов и не имеет жёстко привязанного MSISDN так как имеет несколько профилей. Даже если SECURE SIM попадает в зону подсистемы базовых станций BSS и команда о снятии криптования производится по средствам широковещательного сообщения PagingRequest, он не сможет выполнить данную команду, так как данный исполнительный механизм в алгоритме SECURE SIM отсутствует.

Вызов

Абонент обычной SIM-карты после набора номер нажимает кнопку вызова. В этот момент телефон посредством высокоскоростного канала управления FACCH отправляет сигнал ALERT на BSS (подсистему базовых станций), а оттуда на MSC (центр коммутации). Далее коммутатор отправляет сообщение AddressComplete на вызывающего абонента. Абонент сделавший вызов слышит гудки, а второй абонент звонок вызова.

Зная мобильный номер абонента А или Б (MSIDIN) можно получить от биллинга оператора все детали звонка и саму сессию. Так же можно перехватить эту сессию по воздуху посредством комплекса перехвата.

Абонент Tottoli GSM после набора номера нажимает кнопку «Вызов». Апплет SIM-карты перехватывает вызов и перенаправляет его на наш сервисный номер. Мы используем несколько сервисных номеров, которые привязаны к разным серверам в разных странах. Сервисные номера доставляются на SIM-карту по технологии ОТА (On The Air), без участия абонента. Таким образом, каждый звонок от абонента производится на уникальный сервисный номер. Далее звонок пробрасывается на АТС Tottoli GSM. Данный способ связи устойчив и безопасен для абонента, так как используется несколько точек входа в сеть. К сожалению, подобный механизм поддерживается не во всех странах и не всеми операторами, в этом случае необходимо использовать CallBack, который по свойствам безопасности не отличается от прямого вызова (CallThru).

При данной логике совершения звонка невозможно получить информацию с биллинга оператора, так как неизвестно, у какого оператора зарегистрирована в данный момент SIM-карта Tottoli GSM, нет публичного идентификатора MSISDN, по которому можно было бы получить IMSI, Ki и IMEI. Даже если абонент Б находится на контроле, невозможно понять, с кем был разговор, так как сессия состоит из двух плечей, в разрыве которой стоит серверная АТС. Таким образом, невозможно определить круг Вашего общения.

Приём звонка

Звонок на обычную SIM-карту происходит в соответствии со стандартными процедурами. После выполнения процедуры вызова и назначении TMSI (временного идентификатора мобильной станции) в зоне действия VLR, происходит приземление трафика, и сессия считается установленной. При этом биллинг оператора фиксирует, с какого устройства инициирован звонок, местоположение принимающего устройства в момент сессии (локация), длительность разговора и т.д.

Звонок на Tottoli GSM осуществляется следующим образом. SIM-карте Tottoli GSM присваивается виртуальный номер (DID), который, принимая звонок из сети, преобразовывает его в SIP протокол и маршрутизирует на АТС. В свою очередь АТС определяет конкретного абонента, которому присвоен данный DID запускает процедуру вызова, описанную выше. Таким образом, невозможно определить местоположение Tottoli GSM и взаимосвязи между обоими абонентами, ведь в разрыве всегда находится АТС.

Фонетический контроль

Учитывая тот факт, что операторы активно внедряют в свои сети механизмы поиска абонента по фонетическим признакам (отпечатку голоса) SECURE SIM даёт возможность искажать акустические характеристики для входящих и исходящих звонков. Данный механизм особенно полезен, если звонок с AYSIM производится на обычную SIM.

ИТОГ

SECURE SIM, не имея биллинга у операторов делает невозможным получение необходимой информации для аналитической работы (круг общения (детализации), местоположения (локации), реальных идентификаторов, голоса).

Всегда надо помнить, что телефон – проприетарное устройство, чёрный ящик, какие в нём закладки, никто не знает кроме производителя, а часто и сам производитель может не знать о каких – то багах. Так же необходимо понимать, что операторские инструменты постоянно совершенствуются. Постоянно модернизируются аналитические инструменты, выявляющие одноразовые телефоны по паттернам в биллинге: фиксируется дата первого и последнего звонка с телефона, общее количество звонков и пропорциональный состав уникальных абонентов, с которыми связывались с данной сим карты/аппарата. Имея доступ к биллинговым системам всех национальных операторов, можно определять, когда избавились от одного телефона и начали звонить со следующего, а подключив сюда данные геолокации можно выявить ареал обитания подозрительного абонента.

Пользователей сетей стандарта GSM не перестает волновать вопрос о чувствительности различных аппаратов. Не стоит путать понятия чувствительности приемной части и мощность передающей. На просторах Интернета можно встретить как людей убежденных в том, что разные аппараты по-разному принимают, так и те, кто утверждают, что понятие чувствительности, относительно телефонов GSM , типичный миф. Так ли это?

Для начала вкратце давайте разберемся в основных понятиях, что бы ни у кого не было вопросов.
Итак, упрощенно говоря, сотовый телефон представляет собой дуплексную радиостанцию, ведущую радиообмен на разных частотах. Таких частот, по стандарту GSM может быть 124. На какой именно частоте идет работа, определяет оператор.

Базовая станция - Base Station (BS) передает, а телефон - Mobile Station (MS) принимает на частотах 935.2-959.8 МГц . Мобильный телефон передает, а базовая станция принимает на частотах 890.2-914.8 МГц .

Http://www.mobile-review.com
Если вы прикрываете во время разговора антенну рукой, то мощность также увеличивается, так как идет ослабление сигнала. Учитывая, что телефоны стали небольшими по размерам, прикрыть антенну рукой очень легко. Это изменяет чувствительность аппарата минимум на 4-5 дБ. А как показывают испытания всех современных телефонов различия между ними как раз и укладываются в те самые 4-5 дБ. В свою очередь на испытаниях 4-5 дБ вписываются в статистическую погрешность, термин чувствительности перестает быть объективным и переходит в субъективную плоскость.

Http://www.ixbt.com
Чувствительность, как и характеристика аппарата — понятие совершенно условное. Аппараты из одной партии могут обладать различной чувствительностью. Все зависит от настройки. По инструкции разброс значений для одной и той же модели может достигать 4Дб.

Http://www.onliner.by
Находимся почти в центре соты . Телефон держим правильно. Не закрываем рукой место с антенной сверху. И что мы видим? А то, что уровень -51..-53dB. Теперь расположим телефон на мягкую поверхность дивана практически там же, где держал в руке. ЧТО ЭТО??! у нас уже -44..-45dB!!! Здорово. Берем тел в руку. Полностью закрываем ладонью антенну, уже -60! -62!

Ко всему вышесказанному надо добавить, что обсуждаемые параметры для конкретной модели телефона найти весьма сложно. Подобная информация может просто отсутствовать в инструкции по эксплуатации, да и коэффициент доверия к ней достаточно низок. Производители телефонов часто завышают характеристики, объясняя это своими “более достоверными” методами измерения. Добавьте к этому, предусмотренный стандартом, значительных разброс характеристик даже в телефонах одной серии. Вот так обстоят дела. После всего этого можно доверять субъективным оценкам из различных источников или нет?

Опционально контроллер базовых станций позволяет активизировать режим, при котором возможно пользоваться терминалом на расстоянии 120 км. от БС, но при это количество трафиковых каналов на одной несущей уменьшается до четырех. Этот режим называется расширенная сота (Extended Cell). На территории нашей области его применение не эффективно, что обусловлено сложным рельефом местности. Например, Астрахань - GSM успешно применяет расширенные соты на равнинных участках и для покрытия р. Волги.

Так как же выбрать модель телефона, которая наилучшим образом будет работать в зоне неустойчивой связи?

Думаю, что прежде всего нужно обращать внимание на функциональные возможности телефона, удобство пользования, дизайн и, наконец, цену. А дальше - как повезет. В зоне с нормальным уровнем сигнала особенности параметров и настройки телефона никак не проявятся. В зоне же неустойчивой связи, слабого сигнала, если повезет и попадется телефон с более благоприятным вариантом настройки, он будет работать чуть лучше, если не повезет, связь будет чуть хуже или ее не будет вообще. В любом случае в зоне неустойчивой связи полезно помочь своему телефону, подключив внешнюю направленную антенну или хотя бы гарнитуру hands free . Ведь нельзя же требовать компенсации всех недостатков, которые имеет зона обслуживания оператора сотовой связи , только от маленького телефона.

Для справки:

Децибелы (дБ) - логарифмические единицы, широко используемые в радиотехнике для выражения отношения двух величин. Отношение напряжений (U) и мощностей (P) двух сигналов в децибелах можно выразить так:
N = 20 log (U1/U2) = 10 log (P1/P2)

Если в качестве одной из величин в отношении используется некое эталонное абсолютное значение, то появляется возможность выражать уже абсолютные значения в логарифмических единицах. Например, если принять за эталонное значение мощность 1 мВт, то другие абсолютные значения мощности можно будет выражать в логарифмических единицах <дБм> (децибел к милливатту), которые часто используются в радиотехнике. При этом положительные значения соответствуют уровням, превышающим эталонное значение, а отрицательные - уровням ниже эталонного значения.

Netmonitor является инструментом отображения технических данных о состоянии сети сотового оператора. Позволяет определить уровень входящего сигнала оператора и номера каналов, на котором работает данный оператор, тип сети и основные параметры.

В обычном мобильном телефоне эта функция чаще всего доступна набором специальной комбинации клавиш по типу USSD-запроса.

В основном эта информация используется для правильного подбора и установки .


Активация меню Netmonitor для различных моделей телефонов:

Apple iPhone 2g, 3g, 3gs, 4g, 4gs, 5 - версия прошивка 5.0.1 и выше:
*3001#12345#* затем нажать «вызов». Попадаем в меню Field Test. В левом верхнем углу виден уровень сигнала мобильного оператора, отражаемый в Дб. Далее на вкладку GSM Cell Environment/GSM Cell/Neighboring Cells, здесь видно список каналов. Всего 6 каналов. Для того, чтобы посмотреть информацию о канале следует нажать на стрелочку.

Android:
*#0011# или *#*#4636#*#* или *#*#197328640#*#* . После нажатия последнего символа, меню появляется автоматически.

HTC EVO, HTC Incredible, HTC Touch - Verizon
##33284# и нажать вызов, далее попадаете в меню, где необходимо выбрать сеть, уровень сигнала которой вы хотите узнать.

HTC Wizard 8125, 2125
*#*#364#*#* попадаем в меню. Уровень сигнала тут отображается не в dBm, а в условных единицах. Чем больше значение, тем выше уровень сигнала, например 4 - это -105 дБм, а 31 - это -50дБм.

HTC Thunderbolt, HTC Inspire 4G
*#*#4636#*#*

HTC Touch
##33284#

LG LX-350, LX-550 Fusic(Sprint)
##33284#

LG PM-225, PM-325, MM-535, LX5400
##33284# или ##33284 и нажать ОК. Если спросит пароль: 040793 или 000000.

LG C900 Windows 7 smartphone
Сначала вводим ##634#, если спросит пароль 2277634#*# и нажать ENTER.

LG CG300, C1300, L1400, C2000 (GSM Phones)
2945#*# . В верхней левой строчке уровень сигнала показывается НЕ в дБм. Чем выше значение, тем мощнее сигнал.

LG CU400, CU500, TU550 (GSM)
277634#*# , выбрать Modem settings затем Engineer Mode и нажать ОК

LG Sprint Touchpoint 1100, 2100, 2200, 5250, 4NE1, 1010, 1200
##33284 далее СОХРАНИТЬ и ОК

LG VX-5300
MENU, затем 000000, выбираем FIELD TEST, выбираем SERVICE или SCREEN. Численные значения - это уровни сигналов.

Motorola Droid
Быстро набрать *#*#4636#*#*, далее выбрать Phone info.

Motorola V551, V555, V557 (GSM)
073887* - очень быстро это необходимо набрать. Далее 000000 выбрать TEST MODE и нажать ОК.

Nokia 2100
*3001#12345#, выбираем MENU далее следуем инструкциям.

Samsung A310
MENU, 0, выбираем DEBUG

Samsung A460, 3500, A540
MENU, 0, 9, вводим код 040793, выбираем DEBUG SCREEN

Samsung A500, N400
MENU 010, вводим 040793, выбираем DEBUG SCREEN

Samsung A620, A660, A860, M300
##33284 и нажать ОК, потом набрать 040793, выбрать DEBUG SCREEN и нажать ОК.

Samsung A630, A650, N330
Нажать MENU, 9, *. Ввести код 000000, выбрать DEBUG SCREEN, нажать ОК.

Samsung A670, A570
Нажать MENU, 7, *. Ввести код 000000, выбрать DEBUG SCREEN

Samsung A560, A740, A760, A840, A880, P207
##33284#, нажать ОК, ввести код 040793, выбрать DEBUG SCREEN и нажать ОК.

Samsung A790
##33284#, ввести код 040793, уровень сигнала после D.

Samsung A740, A850, A930, U740, A870 (Verizon)
MENU (центральная синяя кнопка), выбрать SETTINGS & TOOLS и нажать #. Далее ввести 000000, выбрать DEBUG SCREEN. Например T-63 D089 означает, что уровень сигнала -89 dBm.

Samsung A900, A920, A570
##33284# или ##33284 и нажать синюю ОК клавишу. В поле ввести код 040793 или 000000. Выбрать DEBUG SCREEN или FIELD TEST и далее SCREEN. Уровень сигнала будет после буквы D.

Samsung E105, D807, A517, E316, E317, X426, X427, X475, S300, S307, D347
Ввести *#9324#

Samsung BlackJack SGH-I607, A412, BlackJack II
Ввести *#0011#

Samsung i730, I760 (Verizon)
**33284 и код 000000, выбрать MONITOR

Samsung N240
##33284 и нажать ОК. Выбрать DEBUG SCREEN и нажать ОК.

Samsung U520, U340
Нажать MENU (кнопка ОК), 9, 0. Далее 000000, выбрать DEBUG SCREEN. T63 D085-5 означает, что уровень сигнала - 85 дБм.

Samsung C170, X820
*#9999*0#

ARFCN (Absolute radio-frequency channel number) - это номер канала.

Значение ARFCN в диапазоне 1-124 или 974-1024 это означает, что оператор работает в диапазоне 900 МГц и нам нужна (900 мГц) или Репитер GSM900.

Значение ARFCN в диапазоне 512-886 это означает, что оператор работает в диапазоне 1800 МГц и мы выбираем антенну 1800 или репитер DCS1800.

Downlink Frequency - номер канала, по которому определяется частота несущей.

Если значение канала в диапазоне 2937-3088, то это 3G/UMTS900 - и нам нужна антенна GSM900 или Репитер GSM900.

Если значение канала в диапазоне 10562-10838, то это 3G/UMTS2000 - выбираем антенну 3G на 2100 МГц и Репитер WCDMA2100 .

Советуем смотреть информацию по нескольким каналам. Также информация по данному определению номеров каналов будет более достоверной, если проводить данные замеры во время соединения с другим абонентом (входящий или исходящий вызов). Надо понимать, что все значения телефон показывает только для того сотового оператора, сим карта которого вставлена в телефон в момент измерений! И если Вы хотите установить под двух и более сотовых операторов, то необходимо проделать все измерения с каждой симкартой!

Программы Нетмониторинга для смартфонов на базе ОС Android:

Для установки программ подойдет любой смартфон на базе ОС Android (ну или почти любой, китайские айфоны на андроиде использовать не рекомендуем). Хорошо себя показали аппараты серии Nexus (в первую очередь из-за последней версии ОС Android), а также HTC Desire — нетмониторы на этих аппаратах они показывают максимально возможную информацию. Аппараты других марок и моделей тоже подойдут, но могут не отображать некоторую дополнительную информацию (например, список соседних базовых станций, о чем более подробно написано ниже).

Если смартфон у вас уже есть, пол дела сделано. Надо поставить программу-нетмонитор. Их не так много, а хороших и вообще почти нет. Вот некоторые из них котрые можно найти в Google Play Market:

  • Network Monitor
  • NetMon - Radio Network Monitor
  • Netmonitor
  • G-MoN
  • Мониторинг сигнала GSM
  • G-NetTrack
  • Network Monitor Light

Все, что требуется от программ, так это корректно отображать параметры, необходимые нам для мониторинга сети и сохранять их в удобочитаемый пригодный для машинной обработки лог вместе в некоторых случаях с GPS-координатами.

Название приложения Описание
Network Monitor Не показывает соседние соты, интерфейс малоинформативный.
NetMon - Radio Network Monitor Умеет показывать соседей и уровни сигнала. Ведет вполне адекватный лог. Но вот с LTE программа явно подкачала — нужных данных не выдает.
Netmonitor Простейший интерфейс, показывает соседние соты в GSM, отображает уровень сигнала, ведет лог. В UMTS и LTE ведет себя адекватно, выдает все нужные данные.
G-MoN Информативный интерфейс, отображает соседей, выдает нужные данные в LTE, ведет подробный лог.
Мониторинг сигнала GSM Соседи есть, с 3G все хорошо, а вот в LTE нужных данных не выдает.
G-NetTrack Все хорошо с этой программой, но в LTE нужные данные не показывает.
Network Monitor Light Приложение являет собой некое торжество примитивизма. Отправляется на свалку по причине отсутствия нужных данных в LTE (хотя даже если бы они там были, врядли бы мне было приятно пользоваться этой программой).

Что же мониторить?
Для начала, определимся с задачей — нам необходимы параметры, однозначно определяющие базовую станцию, а точнее, конкретный сектор (соту) базовой станции или другую минимальную ячейку позиционирования в мобильной сети.

Детальное описание распространенных типов мобильных сетей и отображение в netmonitor:

GSM

GSM, Global System for Mobile Communications — Глобальная система для мобильной связи. Сеть второго поколения. В Украине применяется в следующих частотных диапазонах:

GSM-1800

Также называется DCS (Digital Cellular Service, Цифровой Сотовый Сервис).

В сети GSM существуют следующие параметры:

Параметр Формат Описание
MCC 3 десятичные цифры Mobile Country Code , Код страны . Уникальный идентификатор страны (полный список MCC).
MNC 2-3 десятичные цифры (ведущие нули имеют значение, 01 и 001 — это разные коды) Mobile Network Code , Код мобильной сети , Код оператора . Уникален в стране с MCC (смотреть список по странам в Википедии или на сайте Международного Союза Электросвязи (ITU, International Telecommunication Union)).
PLMN ID MCC + MNC 1, 5-6 десятичных цифр Public Land Mobile Network Identifier , Идентификатор наземной подвижной сети общего пользования . Является первыми 5-6 цифрами IMSI-номера SIM-карты, в нетмониторах может обозначаться просто как сеть (net).
LAC 16-разрядное целое число Location Area Code , Код местности . Уникален в пределах сети оператора с соответствующим MNC.
CID 16-разрядное целое число Cell Identifier , Идентификатор соты . Уникален в пределах местности с определенным LAC.
TA 6-разрядное целое число (от 0 до 63) Timing Advance , Временное Опережение , Опережение Синхронизации . Показатель временной задержки прохождения сигнала. Увеличивается на 1 при росте удаленности от базовой станции на каждые 550 метров.

Таким образом, получаем иерархическую цепочку идентификаторов MCC-MNC-LAC-CID (PLMN ID-LAC-CID), где для однозначного определения соты в мире важны все параметры. И именно эти параметры нам показывает любой нетмонитор.

Если нетмонитор показывает параметр TA, то можно примерно (с градацией 550 м) установить удаленность мобильной станции от базовой станции. Для позиционирования это может быть полезным, если известно точное местоположение вышки.

В сети GSM базовые станции (BTS, Base Transceiver Station) передают мобильным станциям (MS, Mobile Station — обозначение мобильных телефонов, модемов и т.п.) не только информацию о той соте, в которой работает MS, но и список соседних сот (NCL, Neighbor Cell List). Этот список конфигурируется для каждой соты при настройке параметров сети и служит для корректного проведения процедуры перехода MS из одной соты в другую (такой переход называется handover или handoff, читать подробнее).

Приложения-нетмониторы могут отображать список соседних сот, правда это работает не на всех смартфонах.

UMTS

UMTS, Universal Mobile Telecommunications System — Универсальная Мобильная Телекоммуникационная Система. Сеть третьего поколения. Всего в сети UMTS насчитывается 26 частотных диапазонов, из них в Украине используются два:

Номер Название диапазона Диапазон на передачу, МГц Диапазон на прием, МГц
1 2100 1920-1980 2110-2170
8 900 880-915 925-960

В сетях UMTS такое понятие, как Сота (Cell) не определено. Вместо него появляется концепция Зоны обслуживания (Service Area, SA). Каждая зона обслуживания может состоять из одной или более физических ячеек (сот или секторов, по аналогии с GSM), т.е. может обслуживаться несколькими базовыми станциями (NodeB) одновременно (это, кстати, одно из основных фундаментальных отличий сетей третьего поколения от своих предшественников). Каждая ячейка, в свою очередь, может входить более чем в одну зону обслуживания. Т.е. зоны обслуживания могут пересекаться.

Современные устройства могут одновременно соединяться с тремя физическими ячейками, что помогает обеспечить процедуру т.н. бесшовной или мягкой передачи (softer handover, soft handover), без разрыва и пересоздания канала.

Сопоставление зон обслуживания и ячеек происходит прозрачно, т.е. незаметно для сети передачи данных и, соответственно, для нетмониторов.

Возвращаясь к параметрам, которые нам нужно зафиксировать, в сетях UMTS для нас важны MCC, MNC, LAC, а также:

Для нетмониторинга различие заключается только в названии — CID поменялся на SAC, остальные параметры остались прежними, а уникальный номер соты (в данном случае, зоны обслуживания) имеет такой вид: MCC-MNC-LAC-SAC.

Нетмониторы, обычно, не делают различий в обозначении, и код зоны обслуживания показывают как CID.

Что касается списка соседних сот, то он здесь тоже присутствует и называется Neighbouring Set. Однако, соседние соты здесь являются именно физическими сотами, каждая из которых определяется неуникальным номером PSC (Primary Scrambling Code, всего 512 различных PSC), так что использовать их для позиционирования не получится.

Стоит также отметить, что нетмониторы, в частности G-Mon, фиксируют также эти параметры:

Параметр Формат Описание
RNC ID 16-разрядное целое число Radio Network Controller Identifier , Идентификатор контроллера радиосети . Контроллер радиосети нужен для управления группой базовых станций NodeB, его номер уникален в пределах сети оператора.
C-ID 16-разрядное целое число Cell Identity , Идентификатор соты . Представляет собой уникальный для каждого RNC идентификатор физического сектора. Используется в составе UC-ID (см. ниже).
UC-ID RNC ID + C-ID UTRAN Cell Identity , Идентификатор соты UTRAN 1. Уникальный в сети оператора идентификатор физической соты. Используется для идентификации секторов в интерфейсах связи NodeB с RNC и RNC друг с другом.

UTRAN — Universal Terrestrial Radio Access Network, Сеть универсального наземного радиодоступа, название сети передачи данных UMTS.
Нужно заметить, что G-Mon вместо UC-ID показывает параметр, который у него называется LCID и определяется как RNC ID + SAC. Этот так называемый LCID для позиционирования пользовательского оборудования не используется. Настоящий UC-ID также не используется пользовательским оборудованием и нужен для корректного функционирования опорной сети (CN, Core Network).

LTE

LTE, Long-Term Evolution — Мобильная сеть четвертого поколения, в буквальном переводе: Долговременное развитие (строго говоря, LTE представляет собой все еще третье поколение связи, и обозначается как 3G LTE, т.е. Долговременное развитие сетей третьего поколения. Четвертым поколением могут полноправно называться только сети LTE Advanced). Сети LTE могут быть развернуты в 44 частотных диапазонах (при этом, в диапазонах 33-44 применяется временное разделение каналов (TDD, Time Division Duplex), т.е. прием и передача происходят в одном диапазоне, но не одновременно). В Украине уже давно говорят о том, что технология LTE привлекает операторов. Но пока не известно, когда же она может быть внедрена в нашей стране. В России используются следующие диапазоны:

Номер Название диапазона Диапазон на передачу, МГц Диапазон на прием, МГц
7 2600 2500-2570 2620-2690
20 800 832-862 791-821
38 TDD 2600 2570-2620
40 TDD 2300 2300-2400

Если говорить о параметрах, определяющих ячейку в сетях LTE, то здесь все несколько иначе. Нам понадобится PLMN ID (MCC и MNC), а также следующие параметры:

eNodeB - Аналог базовой станции в LTE. В GSM называется BTS, а в UMTS NodeB.
E-UTRAN - Evolved Universal Terrestrial Radio Access Network, Сеть расширенного универсального наземного доступа, название интерфейса передачи данных сети LTE.

Однозначно идентифицирует соту здесь связка параметров MCC-MNC-ECI (PLMN ID-ECI). Как видно, никакого LAC в сетях LTE не предусмотрено. Это вызвано тем, что сеть передачи данных в LTE предельно упрощена и состоит лишь из сети базовых станций (eNodeB) и выделенного ядра пакетной передачи данных. Никаких коммутаторов (MSC, Mobile Switching Center), контроллеров базовых станций (BSC, Base Station Controller) или контроллеров радиосети (RNC, Radio Network Controller) здесь нет, а их функции возложены на связанные между собой базовые станции eNodeB. Тем не менее, аналог LAC в сети LTE тоже существует — это TAC. Однако он уже не участвует в иерархической нумерации сот (более того, соты на одной базовой станции могут иметь различный TAC) и нужен для корректного отслеживания местоположения пользовательского оборудования (UE, User Equipment — аналог MS из GSM) — при переходе UE в другую зону отслеживания, происходит процедура обновления зоны отслеживания (Tracking Area Update). TAC в сетях LTE служит для логического деления сети на зоны отслеживания, в отличие от LAC, который обусловлен, скорее, физическим разделением сети.

В результате, физический канал между приемником и передатчиком определяется частотой, выделенными фреймами и номерами таймслотов в них. Обычно базовые станции используют один или несколько каналов ARFCN, один из которых используется для идентификации присутствия BTS в эфире. Первый таймслот (индекс 0) фреймов этого канала используется в качестве базового служебного канала (base-control channel или beacon-канал). Оставшаяся часть ARFCN распределяется оператором для CCH и TCH каналов на свое усмотрение.

2.3 Логические каналы

На основе физических каналов формируются логические. Um-интерфейс подразумевает обмен как пользовательской информацией, так и служебной. Согласно спецификации GSM, каждому виду информации соответствует специальный вид логических каналов, реализуемых посредством физических:

  • каналы трафика (TCH - Traffic Channel),
  • каналы служебной информации (CCH - Control Channel).
Каналы трафика делятся на два основных вида: TCH/F - Full rate канал с максимальной скоростью до 22,8 Кбит/с и TCH/H - Half rate канал с максимальной скоростью до 11,4 Кбит/с. Данные виды каналов могут быть использованы для передачи речи (TCH/FS, TCH/HS) и пользовательских данных (TCH/F9.6, TCH/F4.8, TCH/H4.8, TCH/F2.4, TCH/H2.4), например, SMS.

Каналы служебной информации делятся на:

  • Широковещательные (BCH - Broadcast Channels).
    • FCCH - Frequency Correction Channel (канал коррекции частоты). Предоставляет информацию, необходимую мобильному телефону для коррекции частоты.
    • SCH - Synchronization Channel (канал синхронизации). Предоставляет мобильному телефону информацию, необходимую для TDMA-синхронизации с базовой станцией (BTS), а также ее идентификационные данные BSIC .
    • BCCH - Broadcast Control Channel (широковещательный канал служебной информации). Передает основную информацию о базовой станции, такую как способ организации служебных каналов, количество блоков, зарезервированных для сообщений предоставления доступа, а также количество мультифреймов (объемом по 51 TDMA-фрейму) между Paging-запросами.
  • Каналы общего назначения (CCCH - Common Control Channels)
    • PCH - Paging Channel. Забегая вперед, расскажу, что Paging - это своего рода ping мобильного телефона, позволяющий определить его доступность в определенной зоне покрытия. Данный канал предназначен именно для этого.
    • RACH - Random Access Channel (канал произвольного доступа). Используется мобильными телефонами для запроса собственного служебного канала SDCCH. Исключительно Uplink-канал.
    • AGCH - Access Grant Channel (канал уведомлений о предоставлении доступа). На этом канале базовые станции отвечают на RACH-запросы мобильных телефонов, выделяя SDCCH, либо сразу TCH.
  • Собственные каналы (DCCH - Dedicated Control Channels)
    Собственные каналы, так же как и TCH, выделяются определенным мобильным телефонам. Существует несколько подвидов:
    • SDCCH - Stand-alone Dedicated Control Channel. Данный канал используется для аутентификации мобильного телефона, обмена ключами шифрования, процедуры обновления местоположения (location update), а также для осуществления голосовых вызовов и обмена SMS-сообщениями.
    • SACCH - Slow Associated Control Channel. Используется во время разговора, либо когда уже задействован канал SDCCH. С его помощью BTS передает телефону периодические инструкции об изменении таймингов и мощности сигнала. В обратную сторону идут данные об уровне принимаемого сигнала (RSSI), качестве TCH, а также уровень сигнала ближайших базовый станций (BTS Measurements).
    • FACCH - Fast Associated Control Channel. Данный канал предоставляется вместе с TCH и позволяет передавать срочные сообщения, например, во время перехода от одной базовой станции к другой (Handover).

2.4 Что такое burst?

Данные в эфире передаются в виде последовательностей битов, чаще всего называемых «burst», внутри таймслотов. Термин «burst», наиболее подходящим аналогом которому является слово «всплеск», должен быть знаком многим радиолюбителям, и появился, скорее всего, при составлении графических моделей для анализа радиоэфира, где любая активность похожа на водопады и всплески воды. Подробнее о них можно почитать в этой замечательной статье (источник изображений), мы остановимся на самом главном. Схематичное представление burst может выглядеть так:

Guard Period
Во избежание возникновения интерференции (т.е. наложения двух busrt друг на друга), продолжительность burst всегда меньше продолжительности таймслота на определенное значение (0,577 - 0,546 = 0,031 мс), называемое «Guard Period». Данный период представляет собой своего рода запас времени для компенсации возможных задержек по времени при передаче сигнала.

Tail Bits
Данные маркеры определяют начало и конец burst.

Info
Полезная нагрузка burst, например, данные абонентов, либо служебный трафик. Состоит из двух частей.

Stealing Flags
Эти два бита устанавливаются когда обе части данных burst канала TCH переданы по каналу FACCH. Один переданный бит вместо двух означает, что только одна часть burst передана по FACCH.

Training Sequence
Эта часть burst используется приемником для определения физических характеристик канала между телефоном и базовой станцией.

2.5 Виды burst

Каждому логическому каналу соответствуют определенные виды burst:

Normal Burst
Последовательности этого типа реализуют каналы трафика (TCH) между сетью и абонентами, а также все виды каналов управления (CCH): CCCH, BCCH и DCCH.

Frequency Correction Burst
Название говорит само за себя. Реализует односторонний downlink-канал FCCH, позволяющий мобильным телефонам более точно настраиваться на частоту BTS.

Synchronization Burst
Burst данного типа, так же как и Frequency Correction Burst, реализует downlink-канал, только уже SCH, который предназначен для идентификации присутствия базовых станций в эфире. По аналогии с beacon-пакетами в WiFi-сетях, каждый такой burst передается на полной мощности, а также содержит информацию о BTS, необходимую для синхронизации с ней: частота кадров, идентификационные данные (BSIC), и прочие.

Dummy Burst
Фиктивный burst, передаваемый базовой станцией для заполнения неиспользуемых таймслотов. Дело в том, что если на канале нет никакой активности, мощность сигнала текущего ARFCN будет значительно меньше. В этом случае мобильному телефону может показаться, что он далеко от базовой станции. Чтобы этого избежать, BTS заполняет неиспользуемые таймслоты бессмысленным трафиком.

Access Burst
При установлении соединения с BTS мобильный телефон посылает запрос выделенного канала SDCCH на канале RACH. Базовая станция, получив такой burst, назначает абоненту его тайминги системы FDMA и отвечает на канале AGCH, после чего мобильный телефон может получать и отправлять Normal Bursts. Стоит отметить увеличенную продолжительность Guard time, так как изначально ни телефону, ни базовой станции не известна информация о временных задержках. В случае, если RACH-запрос не попал в таймслот, мобильный телефон спустя псевдослучайный промежуток времени посылает его снова.

2.6 Frequency Hopping

Цитата из Википедии:

Псевдослучайная перестройка рабочей частоты (FHSS - англ. frequency-hopping spread spectrum) - метод передачи информации по радио, особенность которого заключается в частой смене несущей частоты. Частота меняется в соответствии с псевдослучайной последовательностью чисел, известной как отправителю, так и получателю. Метод повышает помехозащищённость канала связи.


3.1 Основные векторы атак

Посколько Um-интерфейс является радиоинтерфейсом, весь его трафик «виден» любому желающему, находящемуся в радиусе действия BTS. Причем анализировать данные, передаваемые через радиоэфир, можно даже не выходя из дома, используя специальное оборудование (например, старый мобильный телефон, поддерживаемый проектом OsmocomBB, или небольшой донгл RTL-SDR) и прямые руки самый обычный компьютер.

Выделяют два вида атаки: пассивная и активная. В первом случае атакующий никак не взаимодействует ни с сетью, ни с атакуемым абонентом - исключительно прием и обработка информации. Не трудно догадаться, что обнаружить такую атаку почти не возможно, но и перспектив у нее не так много, как у активной. Активная атака подразумевает взаимодействие атакующего с атакуемым абонентом и/или сотовой сетью.

Можно выделить наиболее опасные виды атак, которым подвержены абоненты сотовых сетей:

  • Сниффинг
  • Утечка персональных данных, СМС и голосовых звонков
  • Утечка данных о местоположении
  • Спуфинг (FakeBTS или IMSI Catcher)
  • Удаленный захват SIM-карты, исполнение произвольного кода (RCE)
  • Отказ в обслуживании (DoS)

3.2 Идентификация абонентов

Как уже упоминалось в начале статьи, идентификация абонентов выполняется по IMSI, который записан в SIM-карте абонента и HLR оператора. Идентификация мобильных телефонов выполняется по серийному номеру - IMEI. Однако, после аутентификации ни IMSI, ни IMEI в открытом виде по эфиру не летают. После процедуры Location Update абоненту присваивается временный идентификатор - TMSI (Temporary Mobile Subscriber Identity), и дальнейшее взаимодействие осуществляется именно с его помощью.

Способы атаки
В идеале, TMSI абонента известен только мобильному телефону и сотовой сети. Однако, существуют и способы обхода данной защиты. Если циклически звонить абоненту или отправлять SMS-сообщения (а лучше Silent SMS), наблюдая за каналом PCH и выполняя корреляцию, можно с определенной точностью выделить TMSI атакуемого абонента.

Кроме того, имея доступ к сети межоператорного взаимодействия SS7, по номеру телефона можно узнать IMSI и LAC его владельца. Проблема в том, что в сети SS7 все операторы «доверяют» друг другу, тем самым снижая уровень конфиденциальности данных своих абонентов.

3.3 Аутентификация

Для защиты от спуфинга, сеть выполняет аутентификацию абонента перед тем, как начать его обслуживание. Кроме IMSI, в SIM-карте хранится случайно сгенерированная последовательность, называемая Ki, которую она возвращает только в хэшированном виде. Также Ki хранится в HLR оператора и никогда не передается в открытом виде. Вцелом, процесс аутентификации основан на принципе четырехстороннего рукопожатия:

  1. Абонент выполняет Location Update Request, затем предоставляет IMSI.
  2. Сеть присылает псевдослучайное значение RAND.
  3. SIM-карта телефона хэширует Ki и RAND по алгоритму A3. A3(RAND, Ki) = SRAND.
  4. Сеть тоже хэширует Ki и RAND по алгоритму A3.
  5. Если значение SRAND со стороны абонента совпало с вычисленным на стороне сети, значит абонент прошел аутентификацию.

Способы атаки
Перебор Ki, имея значения RAND и SRAND, может занять довольно много времени. Кроме того, операторы могут использовать свои алгоритмы хэширования. В сети довольно мало информации о попытках перебора. Однако, не все SIM-карты идеально защищены. Некоторым исследователям удавалось получить прямой доступ к файловой системе SIM-карты, а затем извлечь Ki.

3.4 Шифрование трафика

Согласно спецификации, существует три алгоритма шифрования пользовательского трафика:
  • A5/0 - формальное обозначение отсутствия шифрования, так же как OPEN в WiFi-сетях. Сам я ни разу не встречал сетей без шифрования, однако, согласно gsmmap.org , в Сирии и Южной Корее используется A5/0.
  • A5/1 - самый распространенный алгоритм шифрования. Не смотря на то, что его взлом уже неоднократно демонстрировался на различных конференциях, используется везде и повсюду. Для расшифровки трафика достаточно иметь 2 Тб свободного места на диске, обычный персональный компьютер с Linux и программой Kraken на борту.
  • A5/2 - алгоритм шифрования с умышленно ослабленной защитой. Если где и используется, то только для красоты.
  • A5/3 - на данный момент самый стойкий алгоритм шифрования, разработанный еще в 2002 году. В интернете можно найти сведения о некоторых теоретически возможных уязвимостях, однако на практике его взлом еще никто не демонстрировал. Не знаю, почему наши операторы не хотят использовать его в своих 2G-сетях. Ведь для это далеко не помеха, т.к. ключи шифрования известны оператору и трафик можно довольно легко расшифровывать на его стороне. Да и все современные телефоны прекрасно его поддерживают. К счастью, его используют современные 3GPP-сети.
Способы атаки
Как уже говорилось, имея оборудование для сниффинга и компьютер с 2 Тб памяти и программой Kraken, можно довольно быстро (несколько секунд) находить сессионные ключи шифрования A5/1, а затем расшифровывать чей-угодно трафик. Немецкий криптолог Карстен Нол (Karsten Nohl) в 2009 году способ взлома A5/1. А через несколько лет Карстен и Сильвиан Мюно продемонстрировали перехват и способ дешифровки телефонного разговора с помошью нескольких старых телефонов Motorola (проект OsmocomBB).

Заключение

Мой длинный рассказ подошел к концу. Более подробно и с практической стороны с принципами работы сотовых сетей можно будет познакомиться в цикле статей , как только я допишу оставшиеся части. Надеюсь, у меня получилось рассказать Вам что-нибудь новое и интересное. Жду Ваших отзывов и замечаний!
  • мобильные устройства
  • радиоканал
  • радиосвязь
  • Добавить метки

    Сотовым телефоном пользовались практически все, но мало кто задумывался – как же все это работает? В данном литературном опусе мы попытаемся рассмотреть, как же происходит связь с точки зрения Вашего оператора связи.

    Когда Вы набираете номер и начинаете звонить, ну, или Вам кто-нибудь звонит, то Ваш аппарат по радиоканалу связывается с одной из антенн ближайшей базовой станции.

    Каждая из базовых станций содержит от одной до двенадцати приемо-передающих антенн, направленных в разные стороны, чтобы обеспечить связью абонентов со всех сторон. На профессиональном жаргоне антенны также называют «секторами». Вы их сами наверняка неоднократно видели – большие серые прямоугольные блоки.

    От антенны сигнал по кабелю передается непосредственно в управляющий блок базовой станции. Совокупность секторов и управляющего блока обычно и называется – BS, Base Station, базовая станция . Несколько базовых станций, чьи антенны обслуживают какую-либо определенную территорию или район города, подсоединены к специальному блоку – так называемому LAC, Local Area Controller, «контроллер локальной зоны» , часто называемому просто контроллером . К одному контроллеру обычно подключается до 15 базовых станций.

    В свою очередь, контроллеры, которых также может быть несколько, подключены к самому центральному «мозговому» блоку – MSC, Mobile services Switching Center, Центр Управления Мобильными услугами , в простонародье более известный как коммутатор . Коммутатор обеспечивает выход (и вход) на городские телефонные линии, на других операторов сотовой связи и так далее.

    То есть в итоге вся схема выглядит примерно так:

    В небольших GSM-сетях используется только один коммутатор, в более крупных, обслуживающих более миллиона абонентов, могут использоваться два, три и более MSC , объединенных между собой.

    Зачем же такая сложность? Казалось бы, можно антенны просто подключить к коммутатору – и все, никаких проблем бы не было... Но не все так просто. Дело тут в одном простом английском слове – handover . Этим термином обозначается эстафетная передача обслуживания в сотовых сетях. То есть, когда вы идете по улице или едите на машине (электричке, велосипеде, роликовых коньках, асфальтоукладчике...) и при этом разговариваете по телефону, то, для того чтобы связь не прерывалась (а она не прерывается), необходимо вовремя переключать Ваш телефон из одного сектора в другой, из одной BS в другую, из одной Local Area в другую и так далее. Соответственно, если бы сектора были напрямую подключены к коммутатору, то всеми этими переключениями пришлось бы управлять коммутатору, которому и без того есть, чем заняться. Многоуровневая схема сети дает возможность равномерно распределить нагрузку, что снижает вероятность отказа оборудования и, как следствие, потери связи.

    Пример – если вы с телефоном переходите из зоны действия одного сектора в зону действия другого, то переводом телефона занимается управляющий блок BS, не затрагивая при этом «вышестоящие» устройства – LAC и MSC . Соответственно, если переход происходит между разными BS , то им управляет LAC и так далее.

    Работу коммутатора следует рассмотреть чуть подробнее. Коммутатор в сотовой сети осуществляет практически те же функции, что и АТС в проводных телефонных сетях. Именно он определяет, куда Вы звоните, кто Вам звонит, отвечает за работу дополнительных услуг, и, в конце концов – вообще, определяет, можно ли звонить или нет.

    На последнем пункте остановимся – а что происходит, когда Вы включаете свой телефон?

    Вот, включаете Вы свой телефон. На Вашей SIM-карте есть специальный номер, так называемый IMSI – International Subscriber Identification Number, Международный Опознавательный Номер Абонента . Это номер уникален для каждой SIM-карты в мире, и как раз по нему операторы отличают одного абонента от другого. При включении телефона он посылает этот код, базовая станция передает его на LAC, LAC – на коммутатор, в свою очередь. Тут в действие вступают два дополнительных модуля, связанных с коммутатором – HLR, Home Location Register и VLR, Visitor Location Register . Соответственно, Регистр Домашних Абонентов и Регистр Гостевых Абонентов . В HLR хранятся IMSI всех абонентов, которые подключены к данному оператору. В VLR в свою очередь содержатся данные обо всех абонентах, которые в данный момент пользуются сетью данного оператора. IMSI передается в HLR (разумеется, в сильно зашифрованном виде; вдаваться подробно в особенности шифрования мы не будем, скажем только, что за этот процесс отвечает еще один блок – AuC, Центр Аутентификации), HLR , в свою очередь, проверяет – есть ли у него такой абонент, и, если есть, то не заблокирован ли он, например, за неуплату. Если все в порядке, то этот абонент прописывается в VLR и с этого момента может совершать звонки. У крупных операторов может быть не один, а несколько параллельно работающих HLR и VLR . А теперь попробуем все вышесказанное отобразить на рисунке:

    Вот мы вкратце рассмотрели, как работает сотовая сеть. На самом деле там все куда сложнее, но если описывать все как есть досконально, то данное изложение по объему вполне может превысить «Войну и мир».

    Далее мы рассмотрим, а как (и главное – за что!) оператор списывает у нас деньги со счета. Как Вы уже наверное слышали, тарифные планы бывают трех разных типов – так называемые «кредитные», «авансовые» и «припейд», от английского Pre-Paid , то есть предоплаченный. В чем же различие? Рассмотрим, как может происходить списание денег при разговоре:

    Допустим, Вы куда-либо позвонили. На коммутаторе зафиксировалось – абонент такой-то звонил туда-то, поговорил, допустим, сорок пять секунд.

    Первый случай – у Вас кредитная или авансовая система оплаты. В таком случае происходит следующее: данные о Ваших и не только Ваших звонках накапливаются в коммутаторе и затем, в порядке общей очереди, передаются в специальный блок, называемый Биллингом , от английского to bill – платить по счетам. Биллинг отвечает за все вопросы, связанные с деньгами абонентов – рассчитывает стоимость звонков, списывает абонентскую плату, списывает деньги за услуги и так далее.

    Скорость передачи информации из MSC в Биллинг зависит от того, какова вычислительная мощность биллинга , или, другими словами, с какой скоростью он успевает переводить технические данные о совершенных звонках в непосредственные деньги. Соответственно, чем больше абоненты разговаривают, или чем более «тормозной» биллинг, тем медленнее будет двигаться очередь, соответственно, тем больше будет задержка между самим разговором и фактическим списанием денег за этот разговор. С этим фактом связано часто высказываемое некоторыми абонентами недовольство – «Мол, деньги воруют! Два дня не разговаривал – энную сумму списали...». Но при этом совсем не учитывается, что за разговоры, которые происходили, например, три дня назад, деньги-то сразу и не списали... Хорошее люди стараются не замечать... А в эти дни, например, биллинг мог просто не работать – из-за аварии, или из-за того, что его как-нибудь модернизировали.

    В обратную сторону – от биллинга к MSC – стоит другая очередь, в которой биллинг сообщает коммутатору о состоянии счетов абонентов. Опять же довольно частый случай – задолженность счета может достигать нескольких десятков долларов, а по телефону еще можно звонить – это как раз из-за того, что «обратная» очередь еще не подошла и коммутатор пока не знает о том, что Вы злостные неплательщик и Вас давно надо заблокировать.

    Авансовый же от кредитного тарифы отличаются лишь способом расчета с абонентом – в первом случае человек вносит какую-либо сумму на счет, и деньги за разговоры постепенно вычитаются из этой суммы. Это способ удобен тем, что позволяет в какой-то мере планировать и ограничивать свои расходы на связь. Второй вариант – кредитный, при котором суммарная стоимость всех разговоров за какой-либо период («биллинговый цикл »), обычно за месяц, выставляется в виде счета, который абонент должен оплатить. Кредитная система удобна тем, что страхует Вас от тех случаев, когда срочно необходимо позвонить, а деньги на счету вдруг закончились и телефон заблокирован.

    Припейды устроены совсем по-другому:

    В припейде биллинг как таковой обычно называют «Припейд платформой ».

    Непосредственно в момент начала телефонного соединения устанавливается прямая связь между коммутатором и припейд платформой . Никаких очередей, данные передаются в обе стороны непосредственно в процессе разговора, в режиме реального времени. В связи с этим припейдам присущи следующие характерные черты – это отсутствие абонентской платы (так как нет такого понятия, как биллинговый период ), ограниченный набор дополнительных услуг (их технически трудно тарифицировать в режиме «реального времени»), невозможность «уйти в минус» - разговор просто прервется, как только кончатся деньги на счету. Явным достоинством припейдов является возможность точно контролировать количество денег на счету, и, как следствие, свои расходы.

    В припейдах еще иногда наблюдается некоторое забавное явление – если припейд платформа по каким либо причинам отказывается работать, например, из-за перегрузки, то, соответственно, для абонентов припейд-тарифов в это время все звонки становятся абсолютно бесплатными. Что, собственно, их – абонентов - не может не радовать.

    А как же рассчитываются наши деньги, когда мы разговариваем, находясь в роуминге ? Да и как вообще телефон работает в роуминге? Что же, попробуем ответить и на эти вопросы:

    Номер IMSI состоит из 15-ти цифр, и первые 5 цифр, так называемые СС – Country Code (3 цифры) и NC – Network Code (5 цифр) – четко характеризуют оператора, к которому подключен данный абонент. По этим пяти цифрам VLR гостевого оператора находит HLR домашнего оператора и смотрит в нем – а, собственно, можно ли этому абоненту пользоваться роумингом у данного оператора? Если да, то IMSI прописывается у VLR гостевого оператора, а в HLR домашнего – ссылка на тот самый гостевой VLR , чтобы знать, где искать абонента.

    Со списанием денег в биллинге ситуация тоже не очень простая. Из-за того, что звонки обрабатывает гостевой коммутатор, но деньги подсчитывает свой, «домашний» биллинг , вполне возможны большие задержки в списании средств – до месяца. Хотя существуют и системы, например, «Camel2 », которые и в роуминге работают по принципу припейда, то есть списывают деньги в реальном времени.

    Тут возникает очередной вопрос – а за что списываются деньги в роуминге ? Если «дома» все понятно – есть четко прописанные тарифные планы, то с роумингом ситуация другая – денег списывают много и непонятно, за что. Ну что же, попробуем разобраться:

    Все телефонные звонки в роуминге делятся на 3 основных категории:

    Входящие звонки – в таком случае стоимость звонка складывается из:

    Стоимости международного звонка из дома в гостевой регион
    +
    Стоимость входящего звонка у гостевого оператора
    +
    Некая надбавка, зависящая от конкретного гостевого оператора

    Исходящий звонок домой:

    Стоимость международного звонка из гостевого региона домой
    +
    Стоимость исходящего звонка у гостевого оператора

    Исходящий звонок по гостевому региону:

    Стоимость исходящего звонка у гостевого оператора
    +
    Некая надбавка, зависящая от конкретного оператора

    Как видно, стоимость звонков в роуминге зависит только от двух вещей – от того, к какому оператору абонент подключен дома и того, каким оператором абонент пользуется в гостях. При этом выявляется одна очень важная вещь – стоимость минуты в роуминге абсолютно не зависит от выбранного абонентом тарифного плана.

    Хотелось бы добавить еще одно замечание – если два телефона одного оператора вместе находятся в роуминге у другого оператора (ну, например, двое друзей поехали отдыхать), то разговаривать им друг с другом выйдет весьма накладно – звонящий платит, как за исходящий домой, а принимающий звонок – как за входящий из дома. Это один из недостатков стандарта GSM – то, что связь в этом случае идет через дом. Хотя технически вполне реально устроить связь «напрямую», но кто из операторов на это пойдет, если можно оставить все как есть и зарабатывать деньги?

    Еще один вопрос, в последнее время часто интересующий владельцев более чем одного мобильного телефона – а сколько будет стоить переадресованный звонок с одного телефона на другой? И на этот вопрос ответить вполне реально:

    Допустим, с телефона B установлена переадресация на телефон С. С телефона А звонят на телефон B – соответственно, звонок переадресовывается на аппарат С. В этом случае платят:

    Телефон А – как за исходящий на телефон В
    (вообщем-то, это логично – ведь он на него и звонит)
    Телефон В – платит цену переадресации
    (обычно несколько центов за минуту)
    +
    стоимость международного звонка из региона, где зарегистрирован В, в регион, где зарегистрирован С
    (если телефоны одного региона, то это составляющая равна нулю).
    Телефон С – платит как за входящий с телефона А

    В завершении тем хотелось бы упомянуть еще один тонкий момент – а сколько будет стоить переадресация в роуминге? А вот тут начинается самое интересное:

    Например, в телефоне стоит переадресация по условию занятости на домашний номер. Тогда при входящем звонке образуется так называемая «роуминговая петля » - звонок пойдет на домашний телефон через гостевой коммутатор , соответственно, стоимость такого переадресованного звонка для роумера будет равна сумме стоимостей входящего и исходящего домой звонков плюс еще стоимость самой переадресации. И что забавно при этом – роумер может даже не знать, что подобный звонок имел место быть, и впоследствии удивиться, увидев счет за связь.

    Отсюда следует практический совет – при поездках желательно отключать все виды переадресации (можно оставить только безусловную – в этом случае «роуминговой петли» не получается), особенно переадресации на голосовую почту – иначе впоследствии можно долго удивляться – «Куда ж это деньги делись-то, а?»

    Список терминов, использовавшихся в тексте:

    AuC – Autentification Center, Центр Аутентификации, отвечает за кодирование информации при передаче в сети и приеме из сети
    Billing – Биллинг, система учета денежных средств у оператора
    BS – Base Station, базовая станция, несколько приемо-передающих антенн, принадлежащих одному управляющему устройству.
    Camel2 – одна из систем Prepaid, в которой реализовано мгновенное списывание средств в роуминге
    CC – Country Code, код страны в стандарте GSM (для России – 250)
    GSM – Global System for Mobile Communications, самый распрострастраненный в мире стандарт сотовой связи
    Handover – передача управления трубкой от одной антенны/базовой станции/LAC к другой
    HLR – Home Location Register, реестр домашних абонентов, содержит подробную информацию о всех абонентах, подключенных к данному оператору.
    IMEI – International Mobile Equipment Identification, международный серийный номер оборудования в стандарте GSM, уникален у каждого аппарата
    IMSI – International Mobile Subscriber Identification, международный серийный номер подписчика на услуги стандарта GSM, уникален у каждого абонента
    LAC – Local Area Controller, Контроллер Локальной Зоны, устройства, управляющее работой некоторого количесва базовых станций, чьи антенны обслуживают опеределенную территорию.
    Local Area – Локальная зона, территория, обслуживаемая BS, входящими в состав одного LAC
    MSC - Mobile services Switching Center, Центр Управления Мобильными услугами, коммутатор – центральное звено сети GSM.
    NC – Network Code, Сетевой Код, код конкретного оператора в данной стране в стандарте GSM (для MTS – 01, BeeLine – 99).
    Prepaid – Припейд, предоплата – система биллинга, основанная на мгновенном списании средств.
    Roaming – Роуминг, пользование сетью другого, «гостевого» оператора.
    SIM – Subscriber Identification Module, Модуль Опознавания Абонента, СИМ-карта – электронный блок, вставляемые в телефон, на котором записан IMSI абонента.
    VLR – Visitor Location Register, реестр активных абонентов – содержит информацию об всех абонентах, кто в данный момент пользуется услугами данного оператора.

    Понравилась статья? Поделитесь ей