Контакты

Настройка kvm виртуализации на ubuntu 16.04. Работа с виртуальными машинами KVM. Введение. Установка и настройка виртуального сервера

Мне лично проще всего думать о KVM (Kernel-based Virtual Machine), как о таком уровне абстракции над технологиями хардверной виртуализации Intel VT-x и AMD-V. Берем машину с процессором, поддерживающим одну из этих технологий, ставим на эту машину Linux, в Linux’е устанавливаем KVM, в результате получаем возможность создавать виртуалки. Так примерно и работают облачные хостинги, например, Amazon Web Services . Наряду с KVM иногда также используется и Xen, но обсуждение этой технологии уже выходит за рамки данного поста. В отличие от технологий контейнерной виртуализации, например, того же Docker , KVM позволяет запускать в качестве гостевой системы любую ОС, но при этом имеет и бо льшие накладные расходы на виртуализацию.

Примечание: Описанные ниже действия были проверены мной на Ubuntu Linux 14.04, но по идее будут во многом справедливы как для других версий Ubuntu, так и других дистрибутивов Linux. Все должно работать как на десктопе, так и на сервере, доступ к которому осуществляется по SSH.

Установка KVM

Проверяем, поддерживается ли Intel VT-x или AMD-V нашим процессором:

grep -E "(vmx|svm)" / proc/ cpuinfo

Если что-то нагреполось, значит поддерживается, и можно действовать дальше.

Устанавливаем KVM:

sudo apt-get update
sudo apt-get install qemu-kvm libvirt-bin virtinst bridge-utils

Что где принято хранить:

  • /var/lib/libvirt/boot/ — ISO-образы для установки гостевых систем;
  • /var/lib/libvirt/images/ — образы жестких дисков гостевых систем;
  • /var/log/libvirt/ — тут следует искать все логи;
  • /etc/libvirt/ — каталог с файлами конфигурации;

Теперь, когда KVM установлен, создадим нашу первую виртуалку.

Создание первой виртуалки

В качестве гостевой системы я выбрал FreeBSD. Качаем ISO-образ системы:

cd / var/ lib/ libvirt/ boot/
sudo wget http:// ftp.freebsd.org/ path/ to/ some-freebsd-disk.iso

Управление виртуальными машинами в большинстве случаев производится при помощи утилиты virsh:

sudo virsh --help

Перед запуском виртуалки нам понадобится собрать кое-какие дополнительные сведения.

Смотрим список доступных сетей:

sudo virsh net-list

Просмотр информации о конкретной сети (с именем default):

sudo virsh net-info default

Смотрим список доступных оптимизаций для гостевых ОС:

sudo virt-install --os-variant list

Итак, теперь создаем виртуальную машину с 1 CPU, 1 Гб RAM и 32 Гб места на диске, подключенную к сети default:

sudo virt-install \
--virt-type =kvm \
--name freebsd10 \
--ram 1024 \
--vcpus =1 \
--os-variant =freebsd8 \
--hvm \
--cdrom =/ var/ lib/ libvirt/ boot/ FreeBSD-10.2 -RELEASE-amd64-disc1.iso \
--network network =default,model =virtio \
--graphics vnc \
--disk path =/ var/ lib/ libvirt/ images/ freebsd10.img,size =32 ,bus =virtio

Вы можете увидеть:

WARNING Unable to connect to graphical console: virt-viewer not
installed. Please install the "virt-viewer" package.

Domain installation still in progress. You can reconnect to the console
to complete the installation process.

Это нормально, так и должно быть.

Затем смотрим свойства виртуалки в формате XML:

sudo virsh dumpxml freebsd10

Тут приводится наиболее полная информация. В том числе есть, к примеру, и MAC-адрес, который понадобятся нам далее. Пока что находим информацию о VNC. В моем случае:

С помощью любимого клиента (я лично пользуюсь Rammina) заходим по VNC , при необходимости используя SSH port forwarding. Попадаем прямо в инстялятор FreeBSD. Дальше все как обычно — Next, Next, Next, получаем установленную систему.

Основные команды

Давайте теперь рассмотрим основные команды для работы с KVM.

Получение списка всех виртуалок:

sudo virsh list --all

Получение информации о конкретной виртуалке:

sudo virsh dominfo freebsd10

Запустить виртуалку:

sudo virsh start freebsd10

Остановить виртуалку:

sudo virsh shutdown freebsd10

Жестко прибить виртуалку (несмотря на название, это не удаление):

sudo virsh destroy freebsd10

Ребутнуть виртуалку:

sudo virsh reboot freebsd10

Склонировать виртуалку:

sudo virt-clone -o freebsd10 -n freebsd10-clone \
--file / var/ lib/ libvirt/ images/ freebsd10-clone.img

Включить/выключить автозапуск:

sudo virsh autostart freebsd10
sudo virsh autostart --disable freebsd10

Запуск virsh в диалоговом режиме (все команды в диалоговом режиме — как описано выше):

sudo virsh

Редактирование свойств виртуалки в XML, в том числе здесь можно изменить ограничение на количество памяти и тд:

sudo virsh edit freebsd10

Важно! Комментарии из отредактированного XML, к сожалению, удаляются.

Когда виртуалка остановлена, диск тоже можно ресайзить:

sudo qemu-img resize / var/ lib/ libvirt/ images/ freebsd10.img -2G
sudo qemu-img info / var/ lib/ libvirt/ images/ freebsd10.img

Важно! Вашей гостевой ОС, скорее всего, не понравится, что диск внезапно стал больше или меньше. В лучшем случае, она загрузится в аварийном режиме с предложением переразбить диск. Скорее всего, вы не должны хотеть так делать. Куда проще может оказаться завести новую виртуалку и смигрировать на нее все данные.

Резервное копирование и восстановление производятся довольно просто. Достаточно сохранить куда-то вывод dumpxml, а также образ диска, а потом восстановить их. На YouTube удалось найти видео с демонстрацией этого процесса, все и вправду несложно.

Настройки сети

Интересный вопрос — как определить, какой IP-адрес получила виртуалка после загрузки? В KVM это делается хитро. Я в итоге написал такой скрипт на Python :

#!/usr/bin/env python3

# virt-ip.py script
# (c) 2016 Aleksander Alekseev
# http://сайт/

import sys
import re
import os
import subprocess
from xml .etree import ElementTree

def eprint(str ) :
print (str , file = sys .stderr )

if len (sys .argv ) < 2 :
eprint("USAGE: " + sys .argv [ 0 ] + " " )
eprint("Example: " + sys .argv [ 0 ] + " freebsd10" )
sys .exit (1 )

if os .geteuid () != 0 :
eprint("ERROR: you shold be root" )
eprint("Hint: run `sudo " + sys .argv [ 0 ] + " ...`" ) ;
sys .exit (1 )

if subprocess .call ("which arping 2>&1 >/dev/null" , shell = True ) != 0 :
eprint("ERROR: arping not found" )
eprint("Hint: run `sudo apt-get install arping`" )
sys .exit (1 )

Domain = sys .argv [ 1 ]

if not re .match ("^*$" , domain) :
eprint("ERROR: invalid characters in domain name" )
sys .exit (1 )

Domout = subprocess .check_output ("virsh dumpxml " +domain+" || true" ,
shell = True )
domout = domout.decode ("utf-8" ) .strip ()

if domout == "" :
# error message already printed by dumpxml
sys .exit (1 )

Doc = ElementTree.fromstring (domout)

# 1. list all network interfaces
# 2. run `arping` on every interface in parallel
# 3. grep replies
cmd = "(ifconfig | cut -d " " -f 1 | grep -E "." | " + \
"xargs -P0 -I IFACE arping -i IFACE -c 1 {} 2>&1 | " + \
"grep "bytes from") || true"

for child in doc.iter () :
if child.tag == "mac" :
macaddr = child.attrib [ "address" ]
macout = subprocess .check_output (cmd .format (macaddr) ,
shell = True )
print (macout.decode ("utf-8" ) )

Скрипт работает как с default сетью, так и с bridged сетью, настройку которой мы рассмотрим далее. Однако на практике куда удобнее настроить KVM так, чтобы он всегда назначал гостевым системам одни и те же IP-адреса. Для этого правим настройки сети:

sudo virsh net-edit default

… примерно таким образом:

>



>

После внесения этих правок


>

… и заменяем на что-то вроде:




>

Перезагружаем гостевую систему и проверяем, что она получила IP по DHCP от роутера. Если же вы хотите, чтобы гостевая система имела статический IP-адрес, это настраивается как обычно внутри самой гостевой системы.

Программа virt-manager

Вас также может заинтересовать программа virt-manager:

sudo apt-get install virt-manager
sudo usermod -a -G libvirtd USERNAME

Так выглядит ее главное окно:

Как видите, virt-manager представляет собой не только GUI для виртуалок, запущенных локально. С его помощью можно управлять виртуальными машинами, работающими и на других хостах, а также смотреть на красивые графички в реальном времени. Я лично нахожу особенно удобным в virt-manager то, что не нужно искать по конфигам, на каком порту крутится VNC конкретной гостевой системы. Просто находишь виртуалку в списке, делаешь двойной клик, и получаешь доступ к монитору.

Еще при помощи virt-manager очень удобно делать вещи, которые иначе потребовали бы трудоемкого редактирования XML-файлов и в некоторых случаях выполнения дополнительных команд. Например, переименование виртуальных машин, настройку CPU affinity и подобные вещи. Кстати, использование CPU affinity существенно снижает эффект шумных соседей и влияние виртуальных машин на хост-систему. По возможности используйте его всегда.

Если вы решите использовать KVM в качестве замены VirtualBox, примите во внимание, что хардверную виртуализацию они между собой поделить не смогут. Чтобы KVM заработал у вас на десктопе, вам не только придется остановить все виртуалки в VirtualBox и Vagrant , но и перезагрузить систему. Я лично нахожу KVM намного удобнее VirtualBox, как минимум, потому что он не требует выполнять команду sudo / sbin/ rcvboxdrv setup после каждого обновления ядра, адекватно работает c Unity , и вообще позволяет спрятать все окошки.

В этой вступительной статье я расскажу вкратце обо всех программных средствах, использованных в процессе разработки услуги. Более подробно о них будет рассказано в следующих статьях.

Почему ? Эта операционная система мне близка и понятна, так что при выборе дистрибутива мучений, терзаний и метаний испытано не было. Особых преимуществ перед Red Hat Enterprise Linux у него нет, но было принято решение работать со знакомой системой.

Если вы планируете самостоятельно развернуть инфраструктуру, используя аналогичные технологии, я бы посоветовал взять именно RHEL: благодаря хорошей документации и хорошо написаным прикладным программам это будет если не на порядок, то уж точно раза в два проще, а благодаря развитой системе сертификации без особого труда можно будет найти некоторое количество специалистов, на должном уровне знакомых в данной ОС.

Мы же, повторюсь, решили использовать Debian Squeeze с набором пакетов из Sid/Experimental и некоторыми пакетами, бэкпортированными и собранными с нашими патчами.
В планах имеется публикация репозитория с пакетами.

При выборе технологии виртуализации рассматривались два варианта - Xen и KVM.

Также во внимание принимался факт наличия огромного количества разработчиков, хостеров, комерческих решений именно на базе Xen - тем интереснее было провести в жизнь решение именно на базе KVM.

Основной же причиной, по которой мы решили использовать именно KVM, является необходимость запуска виртуальных машин с FreeBSD и, в перспективе, MS Windows.

Для управления виртуальными машинами оказалось чрезвычайно удобно использовать и продукты, использующие ее API: virsh , virt-manager , virt-install , пр.

Это система, которая хранит настройки виртуальных машин, управляет ими, ведёт по ним статистику, следит за тем, чтобы при старте у виртуальной машины поднимался интерфейс, подключает устройства к машине - в общем, выполняет кучу полезной работы и еще немножко сверх того.

Разумеется, решение не идеально. Из минусов следует назвать:

  • Абсолютно невменяемые сообщения об ошибках.
  • Невозможность изменять часть конфигурации виртуальной машины на лету, хотя QMP (QEMU Monitor Protocol) это вполне позволяет.
  • Иногда к libvirtd по непонятной причине невозможно подключиться - он перестаёт реагировать на внешние события.

Основной проблемой в реализации услуги в самом начале представлялось лимитирование ресурсов для виртуальных машин. В Xen эта проблема была решена при помощи внутреннего шедулера, распределяющего ресурсы между виртуальными машинами - и что самое прекрасное, была реализована возможность лимитировать и дисковые операции в том числе.

В KVM ничего такого не было до появления механизма распределения ресурсов ядра . Как обычно в Linux, доступ к этим функциям был реализован посредством специальной файловой системы cgroup , в которой при помощи обычных системных вызовов write() можно было добавить процесс в группу, назначить ему его вес в попугаях, указать ядро, на котором он будет работать, указать пропускную способность диска, которую этот процесс может использовать, или, опять же, назначить ему вес.

Профит в том, что всё это реализуется внутри ядра, и использовать это можно не только для сервера, но и для десктопа (что и использовали в известном «The ~200 Line Linux Kernel Patch That Does Wonders »). И на мой взгляд, это одно из самых значительных изменений в ветке 2.6, не считая любимого #12309 , а не запиливание очередной файловой системы. Ну, разве что, кроме POHMELFS (но чисто из-за названия).

Отношение к этой библиотеке-утилите у меня весьма неоднозначное.

С одной стороны это выглядит примерно так:

И ещё эту штуку чертовски сложно собрать из исходников и тем более в пакет: иногда мне кажется, что Linux From Scratch собрать с нуля несколько проще.

С другой стороны - очень мощная штука, которая позволяет создавать образы для виртуальных машин, модифицировать их, ужимать, ставить grub, модифицировать таблицу разделов, управлять конфигурационными файлами, переносить «железные» машины в виртуальную среду, переносить виртуальные машины с одного образа на другой, переносить виртуальные машины из образа на железо и, честно говоря, тут меня фантазия немного подводит. Ах, да: ещё можно запустить демон внутри виртуальной машины Linux и получить доступ к данным виртуальной машины вживую, и всё это делать на shell, python, perl, java, ocaml. Это краткий и далеко не полный список того, что можно сделать с .

Интересно, что большая часть кода в генерируется в момент сборки, равно как и документация к проекту. Очень широко используется ocaml, perl. Сам код пишется на C, который потом оборачивается в OCaml, и повторяющиеся куски кода генерируются сами. Работа с образами осуществляется путём запуска специального сервисного образа (supermin appliance), в который через канал внутрь него отправляются команды. Внутри этого образа содержится некоторый rescue набор утилит, таких как parted, mkfs и прочих полезных в хозяйстве системного администратора.

Я с недавнего времени его даже дома стал использовать, когда выковыривал из образа nandroid нужные мне данные. Но для этого требуется ядро с поддержкой yaffs.

Прочее

Ниже приведено ещё несколько интересных ссылок на описание использованных пограммных средств - почитать и поизучать самостоятельно, если интересно. Например,

Проверка поддержки гипервизора

Проверяем, что сервер поддерживает технологии виртуализации:

cat /proc/cpuinfo | egrep "(vmx|svm)"

В ответ должны получить что-то наподобие:

flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 cx16 xtpr pdcm pcid dca sse4_1 sse4_2 popcnt aes lahf_lm epb tpr_shadow vnmi flexpriority ept vpid dtherm ida arat

В противном случае, заходим в БИОС, находим опцию для включения технологии виртуализации (имеет разные названия, например, Intel Virtualization Technology или Virtualization) и включаем ее — задаем значение Enable .

Также проверить совместимость можно командой:

* если команда вернет ошибку «kvm-ok command not found» , установите соответствующий пакет: apt-get install cpu-checker .

Если видим:

INFO: /dev/kvm exists
KVM acceleration can be used

значит поддержка со стороны аппаратной части есть.

Подготовка сервера

Для нашего удобства, создадим каталог, в котором будем хранить данные для KVM:

mkdir -p /kvm/{vhdd,iso}

* будет создано два каталога: /kvm/vhdd (для виртуальных жестких дисков) и /kvm/iso (для iso-образов).

Настроим время:

\cp /usr/share/zoneinfo/Europe/Moscow /etc/localtime

* данная команда задает зону в соответствии с московским временем.

ntpdate ru.pool.ntp.org

* выполняем синхронизацию с сервером времени.

Установка и запуск

Устанавливаем KVM и необходимые утилиты управления.

а) Ubuntu до версии 18.10

apt-get install qemu-kvm libvirt-bin virtinst libosinfo-bin

б) Ubuntu после 18.10:

apt-get install qemu-kvm libvirt-daemon-system libvirt-bin virtinst libosinfo-bin

* где qemu-kvm — гипервизор; libvirt-bin — библиотека управления гипервизором; virtinst — утилита управления виртуальными машинами; libosinfo-bin — утилита для просмотра списка вариантов операционных систем, которые могут быть в качестве гостевых.

Настроим автоматический запуск сервиса:

systemctl enable libvirtd

Запустим libvirtd:

systemctl start libvirtd

Настройка сети

Виртуальные машины могут работать за NAT (в качестве которого выступает сервер KVM) или получать IP-адреса из локальной сети — для этого необходимо настроить сетевой мост. Мы настроим последний.

Используя удаленное подключение, внимательно проверяйте настройки. В случае ошибки соединение будет прервано.

Устанавливаем bridge-utils:

apt-get install bridge-utils

а) настройка сети в старых версиях Ubuntu (/etc/network/interfaces).

Открываем конфигурационный файл для настройки сетевых интерфейсов:

vi /etc/network/interfaces

И приведем его к виду:

#iface eth0 inet static
# address 192.168.1.24
# netmask 255.255.255.0
# gateway 192.168.1.1
# dns-nameservers 192.168.1.1 192.168.1.2

Auto br0
iface br0 inet static
address 192.168.1.24
netmask 255.255.255.0
gateway 192.168.1.1
dns-nameservers 192.168.1.1 192.168.1.2
bridge_ports eth0
bridge_fd 9
bridge_hello 2
bridge_maxage 12
bridge_stp off

* где все, что закомментировано — старые настройки моей сети; br0 — название интерфейса создаваемого моста; eth0 — существующий сетевой интерфейс, через который будет работать мост.

Перезапускаем службу сети:

systemctl restart networking

б) настройка сети в новых версиях Ubuntu (netplan).

vi /etc/netplan/01-netcfg.yaml

* в зависимости от версии системы, конфигурационной файл yaml может иметь другое название.

Приводим его к виду:

network:
version: 2
renderer: networkd
ethernets:
eth0:
dhcp4: false
dhcp6: false
wakeonlan: true

Bridges:
br0:
macaddress: 2c:6d:45:c3:55:a7
interfaces:
- eth0
addresses:
- 192.168.1.24/24
gateway4: 192.168.1.1
mtu: 1500
nameservers:
addresses:
- 192.168.1.1
- 192.168.1.2
parameters:
stp: true
forward-delay: 4
dhcp4: false
dhcp6: false

* в данном примере мы создаем виртуальный бридж-интерфейс br0 ; в качестве физического интерфейса используем eth0 .

Применяем сетевые настройки:

Настаиваем перенаправления сетевого трафика (чтобы виртуальные машины с сетевым интерфейсом NAT могли выходить в интернет):

vi /etc/sysctl.d/99-sysctl.conf

Добавляем строку:

net.ipv4.ip_forward=1

Применяем настройки:

sysctl -p /etc/sysctl.d/99-sysctl.conf

Создание виртуальной машины

Для создания первой виртуальной машины вводим следующую команду:

virt-install -n VM1 \
--autostart \
--noautoconsole \
--network=bridge:br0 \
--ram 2048 --arch=x86_64 \
--vcpus=2 --cpu host --check-cpu \
--disk path=/kvm/vhdd/VM1-disk1.img,size=16 \
--cdrom /kvm/iso/ubuntu-18.04.3-server-amd64.iso \
--graphics vnc,listen=0.0.0.0,password=vnc_password \
--os-type linux --os-variant=ubuntu18.04 --boot cdrom,hd,menu=on

  • VM1 — имя создаваемой машины;
  • autostart — разрешить виртуальной машине автоматически запускаться вместе с сервером KVM;
  • noautoconsole — не подключается к консоли виртуальной машины;
  • network — тип сети. В данном примере мы создаем виртуальную машину с интерфейсом типа «сетевой мост». Для создания внутреннего интерфейса с типом NAT вводим --network=default,model=virtio ;
  • ram — объем оперативной памяти;
  • vcpus — количество виртуальных процессоров;
  • disk — виртуальный диск: path — путь до диска; size — его объем;
  • cdrom — виртуальный привод с образом системы;
  • graphics — параметры подключения к виртуальной машины с помощью графической консоли (в данном примере используем vnc); listen — на какой адресе принимает запросы vnc (в нашем примере на всех); password — пароль для подключения при помощи vnc;
  • os-variant — гостевая операционная система (весь список мы получали командой osinfo-query os , в данном примере устанавливаем Ubuntu 18.04).

Подключение к виртуальной машине

На компьютер, с которого планируем работать с виртуальными машинами, скачиваем VNC-клиент, например, TightVNC и устанавливаем его.

На сервере вводим:

virsh vncdisplay VM1

команда покажет, на каком порту работает VNC для машины VM1. У меня было:

* :1 значит, что нужно к 5900 прибавить 1 — 5900 + 1 = 5901.

Запускаем TightVNC Viewer, который мы установили и вводим данные для подключения:

Кликаем по Connect . На запрос пароля вводим тот, что указали при создании ВМ, (vnc_password ). Мы подключимся к виртуальной машине удаленной консолью.

Если мы не помним пароль, открываем настройку виртуальной машины командой:

И находим строку:



* в данном примере для доступа к виртуальной машине используется пароль 12345678 .

Управление виртуальной машиной из командной строки

Примеры команд, которые могут пригодиться при работе с виртуальными машинами.

1. Получить список созданных машин:

virsh list --all

2. Включить виртуальную машину:

virsh start VMname

* где VMname — имя созданной машины.

3. Выключить виртуальную машину:

ubuntu-vm-builder — пакет, разработанный компанией Canonical для упрощения создания новых виртуальных машин.

Для его установки вводим:

apt-get install ubuntu-vm-builder

KVM или Kernel Virtual Module - это модуль виртуализации для ядра Linux, который позволяет превратить ваш компьютер в гипервизор для управления виртуальными машинами. Этот модуль работает на уровне ядра и поддерживает такие технологии аппаратного ускорения, как Intel VT и AMD SVM.

Само по себе программное обеспечение KVM в пространстве пользователя ничего не виртуализирует. Вместо этого, оно использует файл /dev/kvm для настройки виртуальных адресных пространств для гостевой машины в ядре. Каждая гостевая машина будет иметь свою видеокарту, сетевую и звуковую карту, жесткий диск и другое оборудование.

Также у гостевой системы не будет доступа к компонентам реальной операционной системы. Виртуальная машина выполняется в полностью изолированном пространстве. Вы можете использовать kvm как в системе с графическим интерфейсом, так и на серверах. В этой статье мы рассмотрим как выполняется установка kvm Ubuntu 16.04

Перед тем как переходить к самой установке KVM нужно проверить поддерживает ли ваш процессор аппаратное ускорение виртуализации от Intel-VT или AMD-V. Для этого выполните такую команду:

egrep -c "(vmx|svm)" /proc/cpuinfo

Если в результате будет возвращено 0 - значит ваш процессор не поддерживает аппаратной виртуализации, если 1 или больше - то вы можете использовать KVM на своей машине.

Теперь мы можем перейти к установке KVM, набор программ можно получить прямо из официальных репозиториев:

sudo apt install qemu-kvm libvirt-bin bridge-utils virt-manager cpu-checker

Мы установили не только утилиту kvm, но и библиотеку libvirt, а также менеджер виртуальных машин. После того, как установка будет завершена вам необходимо добавить своего пользователя в группу libvirtd, потому что только root и пользователи этой группы могут использовать виртуальные машины KVM:

sudo gpasswd -a ПОЛЬЗОВАТЕЛЬ libvirtd

После выполнения этой команды выйдите из системы и войдите снова. Далее, давайте проверим все ли правильно было установлено. Для этого используйте команду kvm-ok:

INFO: /dev/kvm exists
KVM acceleration can be used

Если все было сделано правильно, то вы увидите такое же сообщение.

Использование KVM в Ubuntu 16.04

Вы справились с задачей установить kvm в Ubuntu, но вы еще не можете использовать эту среду виртуализации но ее нужно еще настроить. Далее, мы рассмотрим как выполняется настройка kvm Ubuntu. Сначала необходимо настроить сеть. Нам необходимо создать мост, с помощью которого виртуальная машина будет подключаться к сети компьютера.

Настройка моста в NetworkManager

Это можно сделать несколькими способами, например, можно использовать программу конфигурации сети NetworkManager.

Кликните по значку NetworkManager на панели, затем выберите изменить соединения , затем нажмите кнопку Добавить :

Затем выберите тип соединения Мост и нажмите Создать :

В открывшемся окне нажмите кнопку Добавить, чтобы связать наш мост с подключением к интернету:

Из списка выберите Ethernet и нажмите Создать :

В следующем окне выберите в поле устройство, сетевой интерфейс, с которым следует связать наш мост:

Теперь в списке сетевых подключений вы будете видеть ваш мост. Осталось перезагрузить сеть, чтобы полностью применить изменения, для этого выполните:

Ручная настройка моста

Сначала нужно установить набор утилит bridge-utils если вы еще этого не сделали:

sudo apt install bridge-utils

Затем, с помощью программы brctl мы можем создать нужный нам мост. Для этого используйте такие команды:

sudo brctl addbr bridge0
$ sudo ip addr show
$ sudo addif bridge0 eth0

Первая команда добавляет устройство моста br0, с помощью второй вам нужно определить какой сетевой интерфейс является основным подключением к внешней сети, в моем случае это eth0. И с помощью последней команды мы связываем мост br0 с eth0.

Теперь необходимо добавить несколько строк в настройки сети чтобы все поднималось автоматически после старта системы. Для этого откройте файл /etc/network/interfaces и добавьте туда такие строки:

sudo gedit /etc/network/interfaces

loopback
auto lo bridge0
iface lo inet loopback
iface bridge0 inet dhcp
bridge_ports eth0

Когда настройки будут добавлены перезагрузите сеть:

sudo systemctl restart networking

Теперь установка и настройка KVM полностью завершена и вы можете создать свою первую виртуальную машину. После этого вы можете посмотреть доступные мосты с помощью команды:

Создание виртуальных машин KVM

Настройка KVM Ubuntu завершена и теперь мы можем перейти к ее использованию. Сначала давайте просмотрим список уже существующих виртуальных машин:

virsh -c qemu:///system list

Он пуст. Создать виртуальную машину можно через терминал или в графическом интерфейсе. Для создания через терминал используйте команду virt-install. Сначала перейдем в папку libvirt:

cd /var/lib/libvirt/boot/

Для установки CentOS команда будет выглядеть вот так:

sudo virt-install \
--virt-type=kvm \
--name centos7 \
--ram 2048 \
--vcpus=2 \
--os-variant=rhel7 \
--hvm \
--cdrom=/var/lib/libvirt/boot/CentOS-7-x86_64-DVD-1511.iso \
--network=bridge=br0,model=virtio \
--graphics vnc \
--disk path=/var/lib/libvirt/images/centos7.qcow2,size=40,bus=virtio,format=qcow2

Разберем подробнее что означают параметры этой команды:

  • virt-type - тип виртуализации, в нашем случае kvm;
  • name - имя новой машины;
  • ram - количество памяти в мегабайтах;
  • vcpus - количество ядер процессора;
  • os-variant - тип операционной системы;
  • cdrom - установочный образ системы;
  • network-bridge - сетевой мост, который мы настроили ранее;
  • graphics - способ получения доступа к графическому интерфейсу;
  • diskpath - адрес нового жесткого диска для этой виртуальной машины;

После завершения установки виртуальной машины вы можете узнать параметры подключения по VNC с помощью команды:

sudo virsh vncdisplay centos7

Теперь вы можете ввести полученные данные в вашем клиенте VNC и подключится к виртуальной машине даже удаленно. Для Debian команда будет немного отличаться, но все выглядит похожим образом:

Переходим в папку для образов:

cd /var/lib/libvirt/boot/

Можно скачать установочный образ из интернета если это необходимо:

sudo wget https://mirrors.kernel.org/debian-cd/current/amd64/iso-dvd/debian-8.5.0-amd64-DVD-1.iso

Затем создадим виртуальную машину:

sudo virt-install \
--virt-type=kvm \
--name=debina8 \
--ram=2048 \
--vcpus=2 \
--os-variant=debian8 \
--hvm \
--cdrom=/var/lib/libvirt/boot/debian-8.5.0-amd64-DVD-1.iso \
--network=bridge=bridge0,model=virtio \
--graphics vnc \
--disk path=/var/lib/libvirt/images/debian8.qcow2,size=40,bus=virtio,format=qcow2

Теперь снова посмотрим список доступных машин:

virsh -c qemu:///system list

Для запуска виртуальной машины можно использовать команду:

sudo virsh start имя_машины

Для остановки:

sudo virsh shutdown имя_машины

Для перевода в режим сна:

sudo virsh suspend имя_машины

Для перезагрузки:

sudo virsh reboot имя_машины

sudo virsh reset имя_машины

Для полного удаления виртуальной машины:

sudo virsh destroy имя_машины

Создание виртуальных машин в GUI\

Если у вас есть доступ к графическому интерфейсу то нет никакой необходимости использовать терминал, вы можете применить полноценный графический интерфейс менеджера виртуальных машин Virtual Manager. Программу можно запустить из главного меню:

Для создания новой машины кликните по иконке со значком монитора. Дальше вам будет необходимо выбрать образ ISO вашей системы. Также можно использовать реальный CD/DVD привод:

На следующем экране выберите количество памяти, которая будет доступна для виртуальной машины, а также количество ядер процессора:

На этом экране вам нужно выбрать размер жесткого диска, который будет доступен в вашей машине:

На последнем шаге мастера вам предстоит проверить правильность настроек машины, а также ввести ее имя. Также нужно указать сетевой мост, через который машина будет подключаться к сети:

После этого машина будет готова к использованию и появится в списке. Вы можете запустить ее с помощью зеленого треугольника на панели инструментов менеджера.

Выводы

В этой статье мы рассмотрели как выполняется установка KVM Ubuntu 16.04, разобрали как полностью подготовить эту среду к работе, а также как создать виртуальные машины и использовать их. Если у вас остались вопросы, спрашивайте в комментариях!

На завершение лекция от яндекса о том что такое виртуализация в Linux:

Понравилась статья? Поделитесь ей