Контакты

Показатели вторичных источников электропитания. Частота - пульсация - напряжение Частота пульсаций в нагрузке r по порядку

Нормальная работа всех активных элементов радиоэлектронной аппаратуры - транзисторов, тиристоров и микросхем -рассчитана на питание постоянным напряжением. Но такие источники тока, как батареи сухих элементов и аккумуляторы, недолговечны, расходуют запасенную ими электрическую энергию и поэтому нуждаются в периодической замене или подзаряде. Отсюда химические источники электрической энергии могут считаться приемлемыми исключительно для питания носимой аппаратуры или аппаратуры, эксплуатируемой в условиях отсутствия постоянных источников тока. Питание стационарной профессиональной и бытовой аппаратуры удобнее осуществлять от сети переменного тока, используя для этого преобразователь переменного напряжения в постоянное. Таким преобразователем и является выпрямитель.

Различные транзисторы, микросхемы и другие приборы рассчитаны на питание разными напряжениями, поэтому наличие в электросети именно переменного напряжения оказывается очень удобным, так как при помощи трансформатора на его вторичных обмотках из стандартного напряжения сети 220 В легко можно получить любые другие значения напряжений. Получить же различные напряжения при наличии сети постоянного тока оказалось бы значительно сложнее.

Простейшим выпрямительным устройством является од-нополупериодный выпрямитель, схема которого приведенная на рис. 35. Ее отличительной особенностью является то, что диод пропускает ток только в течение одной половины периода переменного напряжения, когда оно положительно

на верхнем по схеме выводе вторичной обмотки трансформатора. Поэтому схема и называется однополупериодной.

Если бы параллельно нагрузке R не был подключен конденсатор С, форма напряжения на нагрузке была бы такой, как показано штриховой линией, и напряжение вместо постоянного на нагрузке было бы пульсирующим. Конденсатор сглаживает пульсации выпрямленного напряжения. После включения при первом же положительном полупериоде конденсатор быстро заряжается. Ток заряда течет по вторичной обмотке трансформатора через открытый диод, конденсатор и обратно к вторичной обмотке. Сопротивление этой цепи мало и определяется сопротивлением обмотки и открытого диода. Поэтому заряд конденсатора происходит быстро. В точке А напряжение заряженного конденсатора почти равно напряжению на обмотке, а в дальнейшем оказывается больше его, из-за чего диод запирается и заряд конденсатора прекращается.

Теперь начинается разряд конденсатора на нагрузку R. Сопротивление нагрузки значительно больше, чем сопротивление цепи


заряда. Поэтому разряд конденсатора происходит медленно, до точки Б, когда напряжение на обмотке трансформатора вновь становится больше напряжения на конденсаторе, и вновь начинается его заряд. Результирующее напряжение на конденсаторе и нагрузке показано сплошной линией. Оно содержит постоянную составляющую (собственно выпрямленное напряжение) и переменную составляющую, которая называется напряжением пульсаций. Очевидно, что чем меньше сопротивление нагрузки (или чем больше потребляемый нагрузкой от выпрямителя ток), тем больше амплитуда пульсаций и меньше выпрямленное напряжение, так как в таком режиме точка Б будет располагаться ниже. Чем больше емкость конденсатора, тем медленнее он станет разряжаться и тем меньше будет амплитуда пульсаций и больше выпрямленное напряжение. Поэтому в схемах выпрямителей используют электролитические конденсаторы большой емкости.

Наибольшее выпрямленное напряжение определяется амплитудой переменного напряжения на вторичной обмотке трансформатора. По этой причине рабочее напряжение конденсатора должно быть не менее этого значения напряжения.

Выбор диода в этой схеме связан со следующими требованиями. Средний выпрямленный ток диода равен току нагрузки. Прямой импульсный ток диода равен отношению амплитуды напряжения на вторичной обмотке трансформатора к сопротивлению этой обмотки. Наконец, во время отрицательного полупериода к диоду прикладывается обратное напряжение, равное удвоенной амплитуде напряжения на вторичной обмотке.

Недостаток однополупериодной схемы выпрямления очевиден: из-за большого промежутка времени между моментами А и Б, который несколько превышает половину периода, конденсатор успевает заметно разрядиться, что приводит к повышенной амплитуде пульсаций выпрямленного напряжения. Дальнейшее сглаживание этих пульсаций затруднено тем, что частота пульсаций равна частоте сети питающего напряжения 50 Гц. В связи с этим выпрямители, собранные по однополупериодной схеме, используются лишь при больших сопротивлениях нагрузки, то есть при малом токе потребления,

когда постоянная времени разряда конденсатора велика и он не успевает заметно разряжаться за время отрицательных полупериодов напряжения.

Указанные недостатки выражены слабее в двухполупери-одной схеме выпрямления, которая показана на рис. 36. Здесь

используются два диода и вдвое увеличена вторичная обмотка трансформатора, оснащенная средней точкой. В течение одного полупериода конденсатор заряжается через один диод, а второй в это время заперт, в течение второго полупериода второй диод отпирается, а первый заперт. Форма напряжения на нагрузке при отсутствии конденсатора показана штриховой линией, а при наличии конденсатора - сплошной. Время, в течение которого конденсатор разряжается, уменьшено в этой схеме более чем вдвое. По этой причине выпрямленное напряжение получается больше, а амплитуда пульсаций значительно меньше, чем при использовании однополупериодного выпрямителя. Существенно также и то, что частота пульсаций вдвое превышает частоту питающей сети и составляет 100 Гц, что значительно облегчает последующее их сглаживание.

Несмотря на указанные преимущества, двухполупериодная схема выпрямления со средней точкой обладает и недостатками, к которым относятся услож-нениетрансформатора, а также



невозможность создания двух совершенно одинаковых половин вторичной обмотки. Это приводит к тому, что амплитуды напряжений на половинах вторичной обмотки оказываются разными. В связи с тем, что конденсатор заряжается попеременно от каждой из половин вторичной обмотки, в составе пульсаций выпрямленного напряжения появляется составляющая с частотой 50 Гц, хотя она и меньше, чем при однополу-периодном выпрямлении. Двухполупериодная схема выпрямителей широко использовалась в эпоху ламповой техники, когда применялись двуханодные кенотроны с общим катодом. Их оказывалось удобно применять в такой схеме, где катоды диодов соединены и для обоих диодрв можно использовать одну обмотку накала. У полупроводниковых диодов отсутствует подогреватель и с их внедрением двухполупериодная схема со средней точкой вторичной обмотки трансформатора, потеряв указанное преимущество, оказалась полностью вытесненной мостовой схемой выпрямления, которая в устаревшей литературе называется схемой Греца.

Мостовая схема выпрямителя показана на рис. 37. Вместо двух диодов она содержит четыре, но зато не нуждается в удвоении вторичной обмотки трансформатора. В течение одной половины периода переменного тока ток проходит от верхнего по схеме вывода вторичной обмотки через диод VD2, нагрузку, через диод VD3 к нижнему выводу вторичной обмотки. В течение следующей половины периода ток проходит от нижнего вывода обмотки через диод VD4, нагрузку, через диод VD1 к верхнему выводу вторичной обмотки трансформатора. Таким образом, в течение обоих полупериодов в нагрузке протекает ток одного и того же направления и диодами выпрямляется одно и то же переменное напряжение вторичной обмотки. Благодаря этому в составе пульсации составляющая с частотой 50 Гц отсутствует.

Мостовая схема выпрямления также является двухполупе-риодной. Форма напряжения на нагрузке в этой схеме оказывается такой же, как и в двухполупериодной схеме со средней точкой. Рабочее напряжение конденсатора также равняется амплитуде переменного напряжения на вторичной обмотке. Однако требования к диодам в обеих двухполупериодных схемах отличаются от требований в однополупериодной схеме.


Рис. 37. Мостовая схема выпрямления

В связи с тем, что ток нагрузки проходит через диоды поочередно, средний выпрямленный ток каждого диода равен половине тока нагрузки.

Обратные напряжения на диодах мостовой схемы равны не удвоенной, а одинарной амплитуде напряжения вторичной обмотки. Обратные напряжения на диодах двухполупериодной схемы со средней точкой и значения импульсных токов обеих схем такие же, как и в однополупериодной схеме. Однако ток вторичной обмотки трансформатора в мостовой схеме равен по своему эффективному значению току нагрузки, что вдвое больше, чем в однополупериодной схеме и в схеме со средней точкой. Поэтому сечение провода вторичной обмотки трансформатора в мостовой схеме должно быть в два раза больше, чем в двух других (диаметр провода - в 1,41 раз больше).

Удвоение количества диодов в мостовой схеме с лихвой окупается вдвое уменьшенным количеством витков вторичной обмотки трансформатора и уменьшением пульсаций выпрямленного напряжения. Для упрощения монтажа мостовых схем промышленностью выпускаются готовые сборки из четырех одинаковых диодов в одном корпусе, которые уже соединены между собой по схеме моста. К таким сборкам, например, относятся сборки типа КД906 со средним выпрямленным током до 400 мА и обратным напряжением до 75 В.

Недостатком мостовой схемы является прохождение выпрямленного тока последовательно через два диода. Падение напряжения на открытом кремниевом диоде достигает 1 В, а на двух последовательно включенных диодах падение напряжения при максимальном прямом токе составляет 2 В. Если выпрямитель рассчитан на низкое выпрямленное напряжение,

которое соизмеримо с падением напряжения на диодах, требуется увеличение напряжения на вторичной обмотке трансформатора. Это необходимо учитывать при расчете выпрямителя.

Если необходимо получить выпрямленное напряжение, которое превышает амплитудное значение напряжения на вторичной обмотке трансформатора, можно использовать однополупериодную схему удвоения выпрямленного напряжения, приведенную на рис. 38. В течение первого полупериода, когда ток вторичной обмотки направлен по схеме сверху вниз, открыт диод VD1 и заряжается конденсатор С1,


Рис. 38. Схема однополупериодного удвоения напряжения

как в схеме однополупериодного выпрямителя. В течение второго полупериода ток вторичной обмотки протекает снизу вверх. Диод VD1 заперт, и отпирается диод VD2. Теперь конденсатор С2 заряжается суммарным напряжением вторичной обмотки трансформатора и напряжением заряженного конденсатора С1, которые соединены согласно. Благодаря этому на конденсаторе С2 образуется удвоенное напряжение. Рабочее напряжение конденсатора С1 равно амплитуде, а рабочее напряжение конденсатора С2 - удвоенной амплитуде напряжения вторичной обмотки трансформатора. Обратные напряжения обоих диодов равны удвоенной амплитуде напряжения вторичной обмотки. Частота пульсаций равна частоте сети - 50 Гц.

Удвоенное напряжение на конденсаторе С2 и низкая частота пульсаций являются недостатком данной схемы. Кроме того, во время заряда конденсатора С2 конденсатор С1 быстро разряжается током заряда конденсатора С2. Во избежание резкого увеличения пульсаций и уменьшения выпрямленного напряжения приходится выбирать емкость С1 значительно больше

емкости С2. Поэтому, если использование этой схемы не диктуется построением остальной схемы блока питания, лучше приме нять другую схему удвоения напряжения, показанную на рис. 39.

Здесь за один полупериод заряжается через диод один конденсатор, а в течение второго полупериода через второй диод заряжается второй конденсатор. Выходное выпрямленное напряжение снимается с обоих конденсаторов, включенных последовательно и согласно. Каждый конденсатор

заряжается по схеме однопо-лупериодного выпрямителя, но суммарное напряжение оказывается двухполупериодным, разряд конденсаторов происходит только через нагрузку, поэтому частота пульсаций вдвое больше частоты питающей сети, а форма выходного напряжения аналогична форме у двухполупериодного выпрямителя. Выходное напряжение почти равно удвоенной амплитуде напряжения вторичной обмотки. Рабочее напряжение обоих конденсаторов равно амплитуде этого напряжения. Обратное напряжение на каждом диоде равно удвоенной амплитуде. Таким образом, использование этой схемы выгоднее, чем схемы, показанной на рис. 38.

Интересно заметить, что при постоянном значении напряжения на вторичной обмотке трансформатора мостовая схема обеспечивает получение выпрямленного напряжения в два раза большего, а схема удвоения напряжения (см. рис. 39) -в четыре раза большего, чем двухполупериодная схема со средней точкой. Следует упомянуть, что в устаревшей литературе схема удвоения напряжения, приведенная на рис. 39, называется схемой Латура.

Рассмотрим еще две схемы выпрямителей с умножением напряжения. На рис. 40 приведена схема выпрямителя с учетве-рением напряжения, построенная по тому же принципу, что и схема, приведенная на рис. 38. В течение одного полупериода заряжаются конденсаторы С1 напряжением обмотки и СЗ суммой напряжения обмотки и заряженного конденсатора С2 минус напряжение на С1; при этом С2 разряжается.


Конденсатор С1 заряжается до амплитуды, а СЗ - до удвоенной амплитуды напряжения на обмотке. В течение следующего полупериода заряжаются С2 суммарным напряжением на обмотке и на С1, а также С4 суммой напряжений на обмотке, на С1 и на СЗ минус напряжение на С2; при этом С1 и СЗ разряжаются. Оба конденсатора С2 и С4 заряжаются до удвоенной амплитуды напряжения на обмотке. Результирующее напряжение снимается с соединенных последовательно и согласно конденсаторов С2 и С4. Частота пульсаций выпрямленного напряжения в этой схеме составляет, как и в схеме на рис. 38, 50 Гц.


Рис. 40. Схема однополупериодного умножения напряжения

На рис. 41 показана двухполупериодная схема учетверения напряжения, подобная схеме, приведенной на рис. 39. Принцип ее действия читатель может рассмотреть самостоятельно по аналогии с предыдущими схемами. Здесь частота пульсаций составляет 100 Гц, и два конденсатора С1 и СЗ работают при напряжении, равном одинарной амплитуде напряжения вторичной обмотки трансформатора вместо одного конденсатора С1 в схеме на рис. 40. При одинаковом количестве элементов эта схема выгоднее предыдущей.

Достоинством схемы, изображенной на рис. 40, является возможность умножения напряжения в нечетное число раз. Так, если удалить конденсатор С4 и подключенный к нему диод, а выпрямленное напряжение снимать с конденсаторов С1 и СЗ, получится утроенное напряжение. Схема же, показанная на рис. 41, позволяет получать только выпрямленное напряжение в четное число раз большее напряжения на вторичной обмотке трансформатора.


Рис. 41. Схема двухполупериодного умножения напряжения

Выпрямление с умножением напряжения не ограничивается его учетверением; подключая дополнительные цепочки, состоящие из диода и конденсатора, можно увеличивать коэффициент умножения. Часто требуется получить высокое выпрямленное напряжение, измеряемое киловольтами. Для достижения этой цели имеются два пути: либо намотать высоковольтную вторичную обмотку трансформатора и выпрямить полученное с нее высокое напряжение простым выпрямителем, либо использовать схему умножения. Второй способ целесообразнее. Высоковольтные обмотки трансформаторов имеют низкую надежность, так как необходимо тщательно изолировать их от других обмоток и от сердечника, а также хорошо изолировать слои этой обмотки один от другого. Кроме того, сама намотка высоковольтных обмоток весьма трудоемка: приходится наматывать тысячи витков очень тонким проводом, который при малейшем натяжении легко рвется. Наконец, выпрямитель требует применения высоковольтных конденсаторов и диодов с очень большим допустимым обратным напряжением. Выход находят путем последовательного соединения нескольких конденсаторов и нескольких диодов. Но тогда при том же количестве конденсаторов и диодов целесообразнее собрать выпрямитель с умножением напряжения, одновременно избавившись от необходимости намотки высоковольтной обмотки трансформатора.

Справочный материал по электронике

1. Элементная база современных электронных устройств

Электронный блок или электронное устройство содержит практически все основные элементы - резисторы, конденсаторы, а также полупроводниковые прибо­ры: диоды, транзисторы, интегральные схемы (ИС) и микро-ЭВМ.

Диоды и транзисторы используются для выпрямления или усиления сигналов. Поэтому их принято называть активными элементами . В отличие от них резисторы и конденсаторы слу­жат только для передачи сигналов. В этой связи их принято называть пассивными элементами.

Рис.1. Конденсатор постоянной ёмкости -1, переменный конденсатор -2, электролитический конденсатор - 3, постоянный резистор -4, переменный резистор -5, терморезистор – 6.

Ток заряда конденсатора,

постоянная времени заряда конденсатора через резистор,

Ток в цепи с резистором (закон Ома),

Сопротивление цепи.

Эквивалентная емкость параллельно соединенных конденсаторов:

При последовательном соединении:

Рис.2. Трансформатор однофазный – 1, катушка индуктивности – 2, трёхфазный трансформатор звезда/звезда – 3 и звезда/треугольник -4, автотрансформатор -5.

Рис.3. Полевые (униполярные) транзисторы. С изолированным затвором – 2.

Рис.4. Биполярный транзистор (его выводы: Б - база, К – коллектор, Э – эмиттер) – 1, стабилитрон – 2, тиристор – 3, варикап – 4, выпрямительный диод – 5.

Рис.5. Стабилизатор напряжения на стабилитроне VD и его ВАХ.

Рис.6. ВАХ тиристора.

Рис.7. ВАХ выпрямительного диода.

Рис.8. Зависимость ёмкости от напряжения варикапа.

Рис. 9. Светодиод – 1, фотодиод – 2, фототранзистор – 3.

Рис.10. Полевой (униполярный) транзистор с изолированным затвором – 1, микросхема (МС) - логический элемент «ИЛИ» - 2, полевой (униполярный) транзистор – 3, микросхема (МС) - логический элемент «И» - 4, микросхема (МС) - инвертор -5.

Рис.11. Схемы включения транзисторов: 1 – с общей базой, 2 – с общим эмиттером, 3 – с общим коллектором (эмиттерный повторитель).



2. Источники вторичного электропитания

а. Однофазный однополупериодный выпрямитель

Рис.1. Схема однофазного однополупериодного выпрямителя и диаграммы напряжений. Верхняя – на входе выпрямителя, средняя – на выходе, нижняя – выпрямленный ток.

Частота пульсаций равна частоте переменного тока.

б . Однофазный двухполупериодный выпрямитель

Рис.2 а - схема мостового выпрямителя, б -

Частота пульсаций равна удвоенной частоте переменного тока.

Рис.3 а - схема нулевого выпрямителя, б - диаграммы напряжений и токов: верхняя - входное напряжение, средняя – выходное напряжение, нижняя – выпрямленного тока.


Обратное напряжение в 2 раза больше , чем у мостового. Частота пульсаций равна удвоенной частоте переменного тока.

в. Трехфазный нулевой выпрямитель

Рис.4 а - схема трехфазного нулевого выпрямителя, б - диаграммы напряжений: верхняя - входное напряжение, нижняя – выходное напряжение.

Частота пульсаций равна утроенной частоте переменного тока.

в. Трехфазный мостовой выпрямитель


Рис.5.Схема трехфазного мостового выпрямителя.

Рис.6 Диаграммы напряжений трехфазного мостового выпрямителя.

Частота пульсаций равна ушестерённой частоте переменного тока.

СГЛАЖИВАЮЩИЕ ФИЛЬТРЫ

Для уменьшения пульсаций выпрямленного напряжения применяют сглаживающие фильтры. Их устанавливают на выходе выпрямителя. Схемы наиболее распространенных типов сглаживающих фильтров приведены на рисунках 1 - 4.

Эффективность сглаживающего фильтра оценивают отношением коэффициентов пульсаций входного (до фильтра) и выходного (после фильтра) напряжений: , где - коэффициент сглаживания; - коэффициенты пульсаций выпрямленного напряжения до и после фильтра.

Рис. 5 Диаграмма напряжений: 1 – на входе сглаживающего фильтра, 2 – на его выходе.

3. Аналоговая электроника

Усилители на транзисторах

Рис.1 Схемы включения транзисторов: 1 – с общей базой, 2 – с общим эмиттером, 3 – с общим коллектором.

Рис.2 Типовая схема усилительного каскада с общим эмиттером на биполярном транзисторе.

Рис.3 Характеристики усилительного каскада с общим эмиттером на биполярном транзисторе: динамическая входная характеристика , повернутая на 90 0 ; переходная характеристика ; выходные характеристики .

Точки С и А находятся в зоне насыщения , точки D и В соответственно в зоне отсечки , а точка покоя Q в рабочей зоне.

Рис.4 Диаграмма входного и выходного напряжения усилительного каскада с общим эмиттером на биполярном транзисторе.

Инверсия фазы учитывается знаком минус в формулах выходного напряжения и коэффициента усиления.

Усилители характеризуются рабочим диапазоном частот , внутри которого коэффициент усиления можно считать постоянным и определяется с помощью амплитудно–частотной характеристики (АЧХ).

Обратная связь


Введение обратной связи позволяет создавать не только усилители с необхомимыми свойствами, но и новые классы электронных схем с различными функциональными характеристиками (генераторы, стабилизаторы и т.д.)

Для усилителя с отрицательной обратной связью по напряжению получим:

При , коэффициент усиления с обратной связью равен . (Пример: операционный усилитель ОУ)

Рис.3 Схема дифференциального усилительного каскада.

Усилители на ОУ – это усилитель на основе интегрального усилителя постоянного тока.

Рис.4 Условное обозначение ОУ.

Параметры ОУ без обратной связи характеризуются следующими величинами:

где и - входное и выходное сопротивления ОУ, - коэффициент усиления по напряжению ОУ, - входной ток ОУ

Рис.5 Инвертирующий усилитель – а., б.

Коэффициент усиления

Рис.6 Неинвертирующий усилитель – а., диаграмма входного и выходного напряжения –б.

Коэффициент усиления по напряжению инвертирующего усилителя с обратной связью:

Рис.7 Схема суммирующего усилителя ,

Рис.8 Схема интегрирующего усилителя ,

И .

ИЗБИРАТЕЛЬНЫЙ УСИЛИТЕЛЬ

Избирательным называется усилитель, обладающий способностью выделять полезный сигнал, имеющий заданную частоту, из всего ряда сигналов, поступающих на вход усилителя. Такой усилитель в отличие от широкополосного усилителя имеет узкую полосу пропускания .

ГЕНЕРАТОРЫ ГАРМОНИЧЕСКИХ КОЛЕБАНИЙ

Генератор представляет собой преобразователь энергии источника постоянного тока в энергию периодических электрических колебаний. Генератор строится на основе усилителя с положительной обратной связью.

Пациенты на приеме нередко интересуются, какая физическая нагрузка безопасна и полезна для их сердца. Чаще всего этот вопрос возникает перед первым посещением спортзала. Параметров для контроля максимальной нагрузки много, но один из самых информативных – пульс. Его подсчет определяет частоту сердечных сокращений (ЧСС).

Почему важно контролировать сердцебиение при нагрузке? Чтобы лучше понять это, сначала постараюсь доступно объяснить физиологические основы адаптации сердечно-сосудистой системы к физической активности.

Сердечно-сосудистая система при нагрузке

На фоне нагрузки возрастает потребность тканей в кислороде. Гипоксия (нехватка кислорода) служит сигналом для организма о том, что ему необходимо повышение активности сердечно-сосудистой системы. Основная задача ССС – сделать так, чтобы поступление кислорода в ткани покрывало его затраты.

Сердце это мышечный орган, выполняющий насосную функцию. Чем активнее и результативнее оно перекачивает кровь, тем лучше органы и ткани обеспечены кислородом. Первый путь увеличения кровотока – ускорение работы сердца. Чем выше ЧСС, тем больший объем крови оно может «перекачать» за определенный промежуток времени.

Второй путь адаптации к нагрузке – увеличение ударного объема (количества крови, выбрасываемого в сосуды за одно сердечное сокращение). То есть, улучшение «качества» работы сердца: чем большим объем камер сердца занимает кровь, тем выше сократимость миокарда. За счет этого сердце начинает выталкивать больший объем крови. Указанное явление называется законом Франка-Старлинга.

Расчет пульса для разных зон нагрузки

По мере увеличения пульса при нагрузке организм претерпевает разные физиологические изменения. На этой особенности основаны расчеты ЧСС для разных пульсовых зон в спортивных тренировках. Каждая из зон соответствует проценту ЧСС от максимально возможного показателя. Их выбирают в зависимости от желаемой цели. Виды зон интенсивности:

  1. Терапевтическая зона. ЧСС – 50-60% от максимальной. Используется для укрепления сердечно-сосудистой системы.
  2. . 60-70%. Борьба с лишним весом.
  3. Зона силовой выносливости. 70-80%. Повышение устойчивости к интенсивным физическим нагрузкам.
  4. Зона совершенствования (тяжелая). 80-90%. Увеличение анаэробной выносливости – способности к длительным физическим нагрузкам, когда расход кислорода организмом выше, чем его поступление. Только для опытных спортсменов.
  5. Зона совершенствования (максимальная). 90-100%. Развитие спринтерской скорости.

Для безопасной тренировки сердечно-сосудистой системы используют пульсовую зону №1.

1. Сначала найти максимальную ЧСС (ЧССmax), для этого:

  • 220 – возраст (годы).
  • он находится от ЧССmax * 0,5 до ЧССmax * 0,6.

Пример расчета оптимального пульса для тренировки:

  • Пациенту 40 лет.
  • ЧССmax: 220 – 40 = 180 уд./мин.
  • Рекомендуемая зона №1: 180*0,5 до 180*0,6.

Расчет пульса для выбранной терапевтической зоны:

  1. 180*0,5 = 90
  2. 180*0,6 = 108

Целевой пульс при нагрузке для человека 40 лет должен нахожиться: от 90 до 108 уд./мин.

То есть нагрузки во время занятий нужно распределять так, чтобы частота пульса выписывалась в этот диапазон.

Возраст (годы) Рекомендованный пульс (уд./мин.)
Таблица с оптимальной частотой пульса для тренировки сердечно-сосудистой системы по возрасту.
20 100-120
25 97-117
30 95-114
35 92-111
40 90-108
45 87-105
50 85-102
55 82-99
60 80-96
65 и старше 70-84

На первый взгляд эти показатели ЧСС в пульсовой зоне №1 кажутся недостаточными для занятий, но это не так. Тренировки должны проходить постепенно, с медленным нарастанием целевого пульса. Почему? ССС должна «привыкнуть» к изменениям. Если неподготовленному человеку (даже относительно здоровому) сразу дать максимальную физическую нагрузку, то это закончится срывом адаптационных механизмов сердечно-сосудистой системы.

Границы пульсовых зон размыты, поэтому при положительной динамике и отсутствии противопоказаний возможен плавный переход в пульсовую зону №2 (c частотой пульса до 70% от максимальной). Безопасная тренировка сердечно-сосудистой системы ограничена первыми двумя пульсовыми зонами, так как нагрузки в них аэробные (поступление кислорода полностью компенсирует его расход). Начиная с 3-й пульсовой зоны происходит переход с аэробных нагрузок на анаэробные: тканям начинает не хватать поступающего кислорода.

Длительность занятий – от 20 до 50 минут, кратность – от 2 до 3 раз в неделю. Советую прибавлять к занятию не более чем по 5 минут каждые 2-3 недели. Необходимо обязательно ориентироваться на собственные ощущения. Тахикардия при нагрузке не должна вызывать дискомфорт. Завышенная при измерении характеристика пульса и ухудшение самочувствия, свидетельствует о чрезмерной физической нагрузке.

Показана умеренная физическая нагрузка. Основной ориентир – это возможность разговаривать во время пробежки. Если во время бега пульс и частота дыхания увеличились до рекомендуемых, но это не мешает вести беседу, то нагрузку можно считать умеренной.

Для тренировки сердца подойдут легкие и умеренные физические нагрузки. А именно:

  • : пешие прогулки по парку;
  • Скандинавская ходьба с палками (один из самых эффективных и безопасных видов кардиотренировки);
  • Бег трусцой;
  • Не быстрая езда на велосипеде или велотренажере под контролем пульса.

В условиях спортивного зала подойдет беговая дорожка. Расчет пульса такой же, как и для пульсовой зоны №1. Тренажер используют в режиме быстрой ходьбы без подъема полотна.

Какой допустим максимальный пульс?

Частота сердечных сокращений при нагрузках прямо пропорциональна величине нагрузок. Чем большую физическую работу выполняет организм, тем выше потребность тканей в кислороде и, следовательно, тем быстрее ЧСС.

Пульс у нетренированных людей в покое находится в диапазоне от 60 до 90 уд/мин. На фоне нагрузки физиологично и естественно для организма ускорение ЧСС на 60-80% от показателя в покое.

Адаптационные возможности сердца не безграничны, поэтому существует понятие «максимальная частота сердечных сокращений», ограничивающая интенсивность и продолжительность физической нагрузки. Это наибольшая величина ЧСС при максимальном усилии до момента крайнего утомления.

Высчитывается по формуле: 220 – возраст в годах. Вот пример: если человеку 40 лет, то для него ЧССmax–180 уд./мин. При расчете возможна погрешность на 10-15 уд./мин. Существует свыше 40 вариантов формул для подсчета максимальной ЧСС, но это более удобна для использования.

Ниже приведена таблица с допустимыми максимальными показателями пульса в зависимости от возраста и, при умеренной физической нагрузке (бег, быстрая ходьба).

Таблица целевой и максимальной ЧСС при физических нагрузках:

Возраст, годы Целевая ЧСС в зоне 50 – 85% от максимальной Максимальная ЧСС
20 100 – 170 200
30 95 – 162 190
35 93 – 157 185
40 90 – 153 180
45 88 – 149 175
50 85 – 145 170
55 83 – 140 165
60 80 – 136 160
65 78 – 132 155
70 75 - 128 150

Как проверить уровень тренированности?

Для проверки своих возможностей, существуют специальные тесты для проверки пульса, определяющие уровень тренированности человека при нагрузках. Основные виды:

  1. Степ-тест. Используют специальную ступеньку. В течение 3 минут выполняют четырехтактный шаг (последовательно забираются и спускаются со ступеньки). Через 2 минуты определяют пульс и сверяют с таблицей.
  2. Проба с приседаниями (Мартинэ-Кушелевского). Измеряют исходную частоту пульса. Выполняют 20 приседаний за 30 секунд. Оценка проводится по приросту пульса и скорости его восстановления.
  3. Проба Котова-Дешина. В основе – оценка пульса и АД после 3-х минут бега на месте. Для женщин и детей время сокращено до 2-х минут.
  4. . Похожа на пробу с приседаниями. Оценка проводится по индексу Руфье. Для этого пульс измеряют сидя до нагрузки, сразу после нее и через 1 минуту.
  5. Проба Летунова. Старый информативный тест, который использовался в спортивной медицине с 1937 года. Включает оценку пульса после 3-х видов нагрузок: приседаний, быстрого бега на месте, бега на месте с подниманием бедра.

Для самостоятельной проверки тренированности сердечно-сосудистой системы лучше ограничиться пробой с приседаниями. При наличии сердечно-сосудистых заболеваниях тесты можно проводить только под наблюдением специалистов.

Влияние физиологических особенностей

ЧСС у детей изначально выше, чем у взрослых. Так, для 2-летнего ребенка, находящегося в спокойном состоянии, абсолютной нормой считается пульс 115 уд./мин. При физической нагрузке у детей в отличии от взрослых ударный объем (количество крови, выбрасываемое сердцем в сосуды за одно сокращение), пульс и артериальное давление повышается сильнее. Чем младше ребенок, тем сильнее ускоряется пульс даже на незначительную нагрузку. УО при этом изменяется мало. Ближе к 13-15 годам показатели ЧСС становятся похожими на взрослые. Со временем ударный объем становится больше.

В пожилом возрасте тоже есть свои особенности показаний пульса при нагрузке. Ухудшение адаптивных способностей во многом связано со склеротическими изменениями в сосудах. Из-за того, что они становятся менее эластичными, возрастает периферическое сосудистое сопротивление. В отличие от молодых людей, у стариков чаще повышается и систолическое, и диастолическое АД. Сократительная способность сердца со временем становится меньше, поэтому адаптация к нагрузке происходит преимущественно за счет увеличения частоты пульса, а не УО.

Есть адаптационные отличия и в зависимости от пола. У мужчин кровоток улучшается в большей степени за счет увеличения ударного объема и в меньшей – за счет ускорения ЧСС. По этой причине пульс у мужчин, как правило, чуть меньше (на 6-8 уд/мин), чем у женщин.

У человека, профессионально занимающегося спортом, значительно развиты адаптивные механизмы. Брадикардия в покое для него является нормой. Пульс может быть ниже не только 60, но и 40-50 уд./мин.

Почему спортсменам комфортно с таким пульсом? Потому что на фоне тренировок у них увеличился ударный объем. Сердце спортсмена во время физических нагрузок сокращается гораздо эффективнее, что у нетренированного человека.

Как изменяется давление при нагрузке

Еще один параметр, который изменяется в ответ на физическую нагрузку – артериальное давление. Систолическое АД – давление, которые испытывают стенки сосудов в момент сокращения сердца (систолы). Диастолическое АД – тот же показатель, но во время расслабления миокарда (диастолы).

Повышение систолического АД является ответом организма на увеличение ударного объема, спровоцированного физической активностью. В норме систолическое АД увеличивается умеренно, до 15-30% (15-30 мм.рт.ст.).

Изменениям подвергается и диастолическое АД. У здорового человека во время физической активности оно может снижаться на 10-15% от исходного (в среднем, на 5-15 мм.рт.ст.). Это вызвано снижением периферического сосудистого сопротивления: чтобы увеличить поставку кислорода к тканям, кровеносные сосуды начинают расширяться. Но чаще колебания диастолического АД либо отсутствуют, либо незначительны.

Почему важно об этом помнить? Чтобы избежать ложной постановки диагноза. Например: АД 140/85 мм.рт.ст. сразу же после интенсивной физической нагрузки – не симптом гипертонической болезни. У здорового человека АД и пульс после нагрузки довольно быстро приходят в норму. Обычно на это уходит 2-4 минуты (зависит от тренированности). Поэтому АД и пульс для достоверности нужно обязательно перепроверять в покое и после отдыха.

Противопоказания к кардиотренировкам

Противопоказаний к занятиям в пульсовой зоне №1 мало. Определяются они индивидуально. Основные ограничения:

  • Гипертоническая болезнь. Опасность представляют резкие «скачки» артериального давления. Кардиотренировки при ГБ можно проводить только после должной коррекции АД.
  • Ишемическая болезнь сердца (инфаркт миокарда, стенокардия напряжения). Все нагрузки выполняют вне острого периода и только с разрешения лечащего врача. Физическая реабилитация у пациентов с ИБС имеет свои особенности и заслуживает отдельной статьи.
  • Воспалительные заболевания сердца. Под полным запретом нагрузки при эндокардите, миокардите. Кардиотренировку можно выполнять только после выздоровления.

Тахикардия при физических нагрузках – не просто беспричинное ускорение ЧСС. Это сложный комплекс адаптационных физиологических механизмов.

Контроль ЧСС – основа грамотной и безопасной тренировки сердечно-сосудистой системы.

Для своевременной коррекции нагрузки и возможности оценить результаты тренировок сердечно-сосудистой системы рекомендую вести дневник ЧСС и АД.

Автор статьи: Практикующий врач Чубейко В. О. Высшее медицинское образование (ОмГМУ с отличием, ученая степень: “кандидат медицинских наук”).

Начало жиросжигающей зоны

143 – 155 50% – 60%
зона легкой активности 132 – 143

2. Вторичные источники электропитания.
Основные схемы, параметры и характеристики

2.1. Структурная схема ВИЭПа

Выпрямительные устройства преобразуют переменное напряжение питающей сети в постоянное напряжение на нагрузке. Они применяются в качестве вторичных источников электропитания (ВИЭП), структурная схема которого представлена на рис. 2.1.

Рис. 2.1. Структурная схема ВИЭПа

Силовой трансформатор Тр понижает переменное напряжение сети U 1 частотой f=50 Гц до необходимого значения U 2 . Кроме того трансформатор осуществляет гальваническую развязку питающей сети и нагрузки ВИЭПа. Выпрямитель В преобразует переменное напряжение U 2 в выпрямленное пульсирующее напряжение одной полярности U d . Сглаживающий фильтр Ф уменьшает пульсации выпрямленного напряжения U d . Стабилизатор Ст поддерживает неизменным выходное постоянное напряжение U вых при колебаниях напряжения сети U 1 или изменении нагрузки ВИЭПа.

2.2. Основные схемы выпрямления

В маломощных источниках питания (до нескольких сотен Ватт) обычно используют выпрямители, питаемые однофазным напряжением сети. В однофазных выпрямителях используют три основные схемы включения диодов: однофазная однополупериодная схема на одном диоде, однофазные двухполупериодные схемы: схема со средней точкой (нулевая схема) на двух диодах и мостовая схема на четырех диодах.

В источниках питания постоянного тока средней (до 1000 Вт) и больше (свыше 1000 Вт) мощности используются выпрямительные устройства, запитываемые трёхфазным напряжением. Трёхфазный выпрямитель может быть выполнен НПО однополуперионной схеме на трёх диодах или по двуполупериодной схеме на шести диодах, которую называют трехфазной мостовой или схемой Ларионова.

2.3. Однофазные схемы выпрямления

2.3.1. Однополупериодная схема выпрямления

Однофазная однополупериодная схема выпрямления (рис. 2.2) является простейшей. Полупроводниковый диод VD1 , обладающий односторонней проводимостью, включается последовательно с нагрузкой R d .

Рис. 2.2. Однополупериодная схема выпрямления

Временные диаграммы (рис. 2.3) напряжений и токов выпрямителя показывают, что в такой схеме ток i d через нагрузку протекает только в течение положительного полупериода напряжения u 2 , поступающего со вторичной обмотки трансформатора (рис. 2.3 а, б). В результате на нагрузке R d появляется пульсирующее напряжение u d положительной полярности (рис. 2.3 в). В отрицательный полупериод напряжения u 2 диод VD1 закрывается, ток i d =0 и диод оказывается под воздействием обратного напряжения u 2 , максимальное значение которого равно амплитуде U 2 m , т. е. напряжение на диоде (рис. 2.3 г).

Выпрямленное пульсирующее напряжение на нагрузке u d описывается выражением в диапазонах и т.д. и может быть представлено суммой постоянной и переменной составляющих

Несинусоидальная переменная составляющая может быть представлена рядом гармоник, т. е. рядом синусоидальных составляющих с увеличивающейся с порядковым номером частотой и убывающей амплитудой. Тогда пульсирующее напряжение может быть представлено в виде гармонического ряда Фурье

Рис. 2.3. Временные диаграммы однополупериодной схемы

который для однополупериодной схемы выпрямления запишется в виде выражения:

С помощью ряда Фурье определяются основные параметры схемы выпрямления.

Постоянная составляющая рассчитывается как среднее значение выпрямленного напряжения на нагрузке при работе выпрямителя в режиме холостого хода за период напряжения сети

Среднее значение пульсирующего тока в нагрузке определяется выражением: .

Переменная составляющая выпрямленного напряжения характеризуется своим максимальным значением (основной гармоникой): , где – амплитуда основной гармоники.

Эффективность работы выпрямителя определяется величиной коэффициента пульсаций , который определяется отношением амплитуды основной гармоники U m к среднему значению выпрямленного напряжения

При этом частота пульсаций основной гармоники совпадает с частотой пульсаций выпрямленного напряжения и равна частоте напряжения сети:

Достоинство однополупериодной схемы – простота. Недостатки: большие габариты трансформатора, большой коэффициент пульсаций, низкая частота основной гармоники. Поэтому такая схема выпрямления находит ограниченное применение, в основном для питания цепей малой мощности и высокого напряжения, например: электронно-лучевых трубок.

2.3.2. Двухполупериодная схема со средней точкой

Однофазная двухполупериодная схема со средней точкой (рис. 2.4) представляет собой параллельное соединение двух однополупериодных выпрямителей, диоды которых работают на общую нагрузку.

Рис. 2.4. Двухполупериодная схема со средней точкой

При подаче напряжения u 1 на первичную обмотку трансформатора на каждой половине вторичной обмотки возникают напряжения u 21 , u 22 (рис. 2.5 а). Вторичные обмотки W 21 и W 22 включены последовательно и согласно. Диоды схемы проводят ток поочередно, каждый в течение полупериода (рис. 2.5 б, в). В первый полупериод к диоду VD1 приложена положительная полуволна напряжения u 21 , в цепи диод - обмотка W 21 протекает ток i 21 (см. рис. 2.5 б). Диод VD2 в это время закрыт, так как к нему через открытый в это время диод VD1 приложено обратное напряжение обеих обмоток трансформатора (рис. 2.5 е). В следующий полупериод откроется диод VD2, и ток i 22 будет протекать по цепи диод - обмотка W 22 . (см. рис. 2.5 в). Таким образом, через сопротивление нагрузки Rd поочередно проходят в одном и том же направлении токи i 21 и i 22 . В результате на нагрузке R d образуются полуволны тока i d и напряжения u d одного и того же знака (рис. 2.5 г, д).

Выпрямленное данной схемой напряжение, как и напряжение однополупериодной схемы, является пульсирующим, т. е. может быть разложено в гармонический ряд Фурье.

Где – среднее значение выпрямленного напряжения на нагрузке. При работе выпрямителя в режиме холостого хода, определяется выражением:

Рис. 2.5. Временные диаграммы для схемы со средней точкой

Отсюда действующее значение напряжения во вторичной обмотке трансформатора:

Величина выпрямленного тока I d определяется выражением:

Амплитуда тока во вторичной обмотке трансформатора а действующее значение .

В двухполупериодной схеме уменьшилась амплитуда основной гармонической составляющей до величины , а следовательно уменьшился и коэффициент пульсаций:

.

Из временных диаграмм (см. рис. 2.5 а, д) видно, что напряжение на нагрузке достигает максимального значения U 2 m два раза за период выпрямляемого напряжение. Поэтому частота пульсаций напряжения нагрузки U d равна удвоенной частоте напряжения сети:

В схеме выпрямления со средней точкой токи во вторичных обмотках протекают поочередно (в обмотке W 21 от конца к началу, а в обмотке W 22 от начала к концу), поэтому сердечник трансформатора не подмагничивается и в первичной обмотке действует чисто синусоидальный ток, что приводит к снижению типовой мощности и лучшему использованию трансформатора. По сравнению с однополупериодной схемой выпрямления в два раза увеличилось значение выпрямленного напряжения U d и тока I d , уменьшился коэффициент пульсаций.

Недостатки схемы: необходимость вывода средней точки вторичной обмотки, необходимость симметрирования вторичных обмоток для обеспечения равенства большое обратное напряжение на диодах, увеличение габаритов трансформатора.

2.3.3. Двухполупериодная мостовая схема

В рассматриваемой схеме (рис. 2.6) выпрямитель состоит из четырех полупроводниковых диодов, собранных по схеме моста, в одну из диагоналей которого ab подключается напряжение вторичной обмотки трансформатора, а в другую cd – сопротивление нагрузки R d . Положительным полюсом нагрузки является общая точка соединения катодов диодов (точка d ), отрицательным – точка соединения анодов (точка с ).

Рис. 2.6. Двухполупериодная мостовая схема

Работа схемы показано на рис. 2.7, где показаны формы токов и напряжений для идеализированной мостовой схемы в разных ее сечениях. Напряжение и ток вторичной обмотки трансформатора изменяются во времени по гармоническому закону (рис. 2.7а)

;

В положительный полупериод питающего напряжения потенциал точки а положителен, а точки b – отрицателен. Диоды VD1 и VD3 будут включены в прямом направлении и импульс тока i 13 будет проходить от положительного зажима вторичной обмотки через диод VD1, нагрузку R d и через открытый диод VD3 к отрицательному зажиму вторичной обмотки трансформатора (рис. 2.6). Форма этого тока будет повторять форму тока i 2 вторичной обмотки трансформатора (рис. 2.7б). Проходя через нагрузку R d , импульс тока i 13 выделяет на ней напряжение u d (рис. 2.7д), которое без учета потерь напряжения на диодах повторяет форму положительной полуволны напряжения , т. е. имеет амплитуду пульсаций В течение первого полупериода диоды VD2 и VD4 заперты, так как включены в обратном направлении. Эти диоды находятся под воздействием отрицательного обратного напряжения , максимальная величина которого (рис. 2.7е).

При происходит смена полярности напряжения на вторичной обмотке трансформатора, при этом анод диода VD2 подключается к « + », а катод диода VD4 к « – » напряжения (см. рис. 2.6). Теперь в течение второго полупериода под воздействием прямого напряжения будут

Рис. 2.7. Временные диаграммы для мостовой схемы

находиться диоды VD2 и VD4 ,а диоды VD1 и VD3 заперты обратным напряжением (см. рис. 2.7ж).

В цепи вторичной обмотки трансформатора, открытых диодов VD2 и VD4 и нагрузки R d будет проходить импульс тока i 24 (см. рис. 2.7в) такой же формы как импульс тока i 13 , выделяя на нагрузке импульс напряжения , величина и полярность которого такая же как в первом полупериоде (рис. 2.7д).

Таким образом, за период преобразуемого напряжения в цепи нагрузки R d проходят два импульса тока, не меняя своего направления и создавая ток нагрузки (см. рис. 2.7г), под воздействием которого на нагрузке выделяется напряжение пульсирующего характера (см. рис. 2.7д), такого же вида, как для схемы со средней точкой, Выпрямленное напряжение содержит постоянную составляющую и бесконечный ряд гармонических составляющих и может быть записано в виде гармонического ряда Фурье:

Постоянная составляющая рассчитывается как среднее значение выпрямленного напряжения на нагрузке при работе выпрямителя в режиме холостого хода:

При расчете выпрямленного тока I d через нагрузку следует учесть, что при прохождении тока через открытый диод на нем падает напряжение , величина которого указывается в справочниках, поэтому ток в нагрузке определяется выражением:

Действующее значение тока вторичной обмотки связано с током нагрузки соотношением: Основная гармоническая составляющая выпрямленного напряжения определяется выражением:

следовательно частота пульсаций равна удвоенной частоте преобразуемого сетевого напряжения:

Амплитуда основной гармонической составляющей уменьшилась по сравнению с однополупериодной схемой, а следовательно уменьшился и коэффициент пульсаций:

.

Чтобы не допустить повреждения диодов при их работе в схемах выпрямления, необходимо учитывать при выборе диодов максимальные значения напряжения и тока во вторичной обмотке трансформатора. Максимальное обратное напряжение на диоде равно напряжению на концах вторичной обмотки. Поэтому для схем со средней точкой , а для однополупериодной и мостовой схемы - . В двухполупериодных схемах выпрямления импульс тока проходит через диод только в течение полупериода, поэтому среднее значение тока, протекающего через диод, в два раза меньше выпрямленного тока : В однополупериодной схеме через диод и нагрузку протекает одинаковый ток:

Мостовая схема является основной схемой для однофазных выпрямителей. Она может использоваться без трансформатора, то есть включаться непосредственно в цепь переменного тока, если напряжение сети обеспечивает требуемую величину выпрямленного напряжения. При работе с трансформатором импульсы токов i 13 и i 24 во вторичной обмотке трансформатора направлены навстречу друг другу, поэтому их постоянные составляющие компенсируются, а трансформатор работает в режиме без постоянного подмагничивания. По сравнению со схемой со средней точкой мостовая схема имеет меньшие габариты трансформатора, так как на вторичной стороне помещается только одна обмотка.

2.4. Сглаживающие фильтры

Напряжение на выходе любого блока диодов всегда является пульсирующим, содержащим кроме постоянного напряжения ряд синусоидальных составляющих разных частот. В большинстве случаев питание электронных устройств пульсирующим напряжением совершенно неприемлемо. Требования к допустимой величине коэффициента пульсаций зависят от назначения и режима работы устройства. Например, для входных усилительных каскадов коэффициент пульсаций может находиться в пределах . Для питания устройств эти пульсации должны быть снижены до минимального уровня, при котором они не оказывают существенного влияния на работу электротехнических устройств.

С этой целью используются сглаживающие фильтры, которые пропускают на выход только постоянную составляющую выпрямленного напряжения и максимально ослабляют его переменные составляющие. Основными элементами фильтров являются индуктивность (включается последовательно с нагрузкой) и конденсатор (включается параллельно нагрузке). Сглаживающее действие этих элементов связано с тем, что индуктивность представляет большое сопротивление () для токов высокой частоты и малое для токов низкой частоты, а конденсатор – большое сопротивление ( для токов низкой частоты и малое сопротивление для токов высокой частоты.

Эффективность сглаживания пульсаций оценивается коэффициентом сглаживания, который представляет собой отношение коэффициента пульсаций на входе и выходе фильтра

Коэффициент сглаживания показывает, во сколько раз фильтр уменьшает пульсации выпрямленного напряжения.

В зависимости от способа включения конденсатора и индуктивности различают следующие виды фильтров: емкостные (рис. 2.8 а), индуктивные (рис. 2.8 б), Г-образные (рис. 2.8 в), Г-образные (рис. 2.8 г).

Рис. 2.8. Электрические схемы сглаживающих фильтров

На рис. 2.9 приведены осциллограммы выходных напряжений двухполупериодного выпрямителя при работе без фильтра (рис. 2.9 а), при включении емкостного (рис. 2.9 б) и индуктивного (рис. 2.9 в) фильтров.

Рис. 2.9. Временные диаграммы при работе: а) без фильтра;
б) с емкостным фильтром; в) с индуктивным фильтром

При использовании емкостного фильтра сглаживание пульсации выпрямленного напряжения и тока происходит за счет периодической зарядки конденсатора и последующей его разрядки на сопротивление нагрузки . Зарядка конденсатора происходит током i d протекающим через диод в течение небольшого промежутка времени, когда мгновенное значение пульсирующего напряжения на выходе выпрямителя (рис. 2.9 а) выше напряжения на нагрузке (и на конденсаторе). Постоянная времени заряда конденсатора определяется емкостью конденсатора фильтра и небольшим сопротивлением, равным сумме прямого сопротивления открытых диодов и приведенного ко вторичной обмотке активного сопротивления трансформатора. Когда напряжение становится меньше напряжения на конденсаторе, диоды закрываются и конденсатор разряжается через сопротивление нагрузки (рис. 2.9 б). При большой емкости конденсатора и сопротивления нагрузки постоянная времени разрядка конденсатора значительно больше постоянной времени его зарядки. При этом разрядка конденсатора протекает во времени практически по линейному закону, а выходное напряжение (рис. 2.9 б) не уменьшается до нуля, а пульсирует в некоторых пределах. увеличивая среднее значение выпрямленного напряжения , которое может достигнуть максимального значения при большой емкости конденсатора.

Для эффективной работы сглаживающего фильтра емкостное сопротивление на частоте основной гармоники должно быть по крайней мере на порядок меньше сопротивления нагрузки :

Отсюда следует, что применение емкостного фильтра более эффективно при высокоомной нагрузке с малыми значениями выпрямленного тока, так как при этом возрастает эффективность сглаживания.

При включении последовательно с нагрузкой индуктивного фильтра (рис. 2.8 б) изменяющееся магнитное поле, возбуждаемое пульсирующим током, наводит электродвижущую силу самоиндукции . В соответствии с принципом Ленца электродвижущая сила направлена так, чтобы сгладить пульсации тока в цепи, а следовательно, и пульсации напряжения нагрузки (рис. 2.9 в). Эффективность сглаживания увеличивается при больших значениях выпрямленного тока.

Величину индуктивности фильтра выбирают таким образом, чтобы индуктивное сопротивление было значительно больше величины сопротивления нагрузки .

Большее уменьшение пульсаций выпрямленного напряжения обеспечивают смешанные фильтры, в которых используются конденсаторы и индуктивности, например, Г-образные сглаживающие фильтры (рис. 2.8 в, г). Однако при использовании этих фильтров уменьшается величина постоянной составляющей выпрямленного напряжения на нагрузке за счет падения части напряжения на активных сопротивлениях обмотки дросселя или .

2.5. Внешняя характеристика выпрямительного устройства

Внешняя характеристика определяет границы изменения тока нагрузки , при которых выпрямленное напряжение на нагрузке не уменьшается ниже допустимой величины при изменении сопротивления нагрузки . Внешняя характеристика описывается уравнением:

где – среднее значение выпрямленного напряжения в режиме холостого хода выпрямителя, – активная составляющая сопротивлений обмоток трансформатора, – падение напряжения на диодах одного плеча выпрямителя. Для схемы со средней точкой , для мостовой – , – падение напряжения на открытом диоде.

Внешняя характеристика 1 (рис. 2.10) соответствует выпрямителю без фильтра, характеристика 2 – выпрямителю с емкостным фильтром, а при включении в схему Г-образного LC фильтра получается характеристика 3. Напряжение холостого хода для двухполупериодной схемы без фильтра , а при включении емкостного фильтра за счет заряда конденсатора может повысится до максимального значения .

Рис. 2.10. Внешние характеристики выпрямительного устройства

Уменьшение выходного напряжения при увеличении тока нагрузки объясняется падением напряжения на элементах схемы: сопротивление и диодах. При включении емкостного фильтра дополнительное уменьшение выходного напряжения происходит за счет более быстрого разряда конденсатора на меньшее сопротивление нагрузки . При включении Г – образного LC фильтра дополнительное снижение напряжения на нагрузке вызвано падением напряжения на последовательном включенном индуктивном фильтре.

2.6. Трехфазные схемы выпрямления

2.6.1. Трехфазная схема выпрямления со средней точкой

Трехфазную схему выпрямления со средней точкой (рис. 2.11) называют также трехфазной однотактной схемой, поскольку выпрямлению подвергается только одна из полуволн переменного напряжения каждой фазы. В трехфазную схему выпрямления входит трансформатор, первичные обмотки которого могут быть соединены в звезду или треугольник, а вторичные обмотки – только в звезду. Концы a , b , c вторичных обмоток трансформатора соединены с анодами трех диодов VD 1, VD 2, VD 3. Катоды диодов соединяются вместе и служат положительным полюсом для цепи нагрузки, а вывод средней точки трансформатора – отрицательным полюсом.

Рис. 2.11. Схема выпрямления

Работа выпрямителя на активную нагрузку.

Первоначально допустим, что нагрузка схемы выпрямления активная, т.е. X d = 0. Для упрощения будем считать диоды и трансформатор идеальными, т.е. сопротивление диода в прямом направлении равно нулю, а в обратном – бесконечно велико, активное сопротивление и индуктивность рассеяния X a обмоток трансформатора и индуктивность питающей сети принимаем равными нулю. Тогда переход тока с одного диода на другой считаем мгновенным. Работа схемы иллюстрируется диаграммами, приведенными на рис. 2.12. Из временной диаграммы (см. рис. 2.12 а) видно, что напряжения u 2 a , u 2 b , u 2 c сдвинуты по фазе на одну треть периода (2p/3) и в течение этого интервала напряжение одной фазы выше напряжения двух других фаз относительно нулевой точки трансформатора. Диоды схемы работают попеременно по 1/3 периода (2p/3). В какой-либо момент времени проводит ток тот диод, потенциал анода которого по отношению к нулевой точке трансформатора выше, чем у других диодов. Это справедливо для случая соединения диодов в катодную группу. Ток в каждом диоде протекает в течение 1/3 периода (2p/3) и прекращается тогда, когда потенциал анода работающего диода становится ниже потенциала катодов. Диод закрывается и к нему прикладывается обратное напряжение u b (см. рис. 2.12 в). Переход тока от одного диода к другому происходит в момент пересечения кривых фазных напряжений (точки а, б, в, г на рис. 2.12а). Выпрямленный ток i d проходит через нагрузку R d непрерывно и складывается из чередующихся анодных токовi a 1 , i a 2 , i a 3 . Мгновенное значение выпрямленного напряжения u d (см. рис.2.12б) в каждый момент определяется мгновенным значением напряжения той фазы, с которой соединен работающий диод. Выпрямленное напряжение u d представляет собой огибающую синусоид фазных напряжений u 2 вторичной обмотки трансформатора Т. Кривая выпрямленного тока i d при X a = 0, X d = 0 повторяет кривую выпрямленного напряжения. Форма кривой тока i a в диоде VD 1 изображена на рис. 2.12в. Ток диода VD 1 в этом случае будет являться также и током i 2 a вторичной обмотки трансформатора. Кривая обратного напряжения u b 1 на диоде VD 1 формируется из участков синусоид линейных напряжений (u ab , u с a ), т.к. анод неработающего диода присоединен к одной из фаз, а катод через открытый диод – к другой фазе вторичной обмотки. Мгновенные значения междуфазного (линейного) напряжения соответствуют ординатам площади, заштрихованной на рис. 2.12а. По ним построена линейная диаграмма обратного напряжения u b 1 , на диоде VD 1 (см. рис. 2.12 в). S Т = = 1,345P d ,

где S 1 = 3U 1 I 1 = 1,21P d – расчетная мощность первичной обмотки трансформатора;

S 2 = 3U 2 I 2 = 1,48P d – расчетная мощность вторичной обмотки трансформатора;

P d = U d I d – мощность в нагрузке.

В трехфазном выпрямителе со средней точкой имеет место явление вынужденного намагничивания магнитопровода трансформатора, т.к. токи вторичных обмоток трансформатора i 2 a , i 2 b , i 2 c содержат постоянную составляющую, равную I d , которая создает в каждом стержне магнитопровода однонаправленный поток вынужденного намагничивания трансформатора. Этот поток, пульсируя с тройной частотой по отношению к частоте питающей сети, замыкается частично по сердечнику, частично по воздуху и стальной арматуре, окружающей сердечник трансформатора, вызывая их нагрев. В результате сердечник трансформатора насыщается, а в стальной арматуре возникают тепловые потери за счет вихревых токов, индуцируемых переменной составляющей потока вынужденного намагничивания. Насыщение магнитопровода трансформатора приводит к резкому увеличению намагничивающего тока (тока холостого хода) трансформатора. Во избежание насыщения приходится увеличивать сечение магнитопровода. Однако это приводит к завышению массогабаритных показателей трансформатора и всей выпрямительной установки. Для устранения дополнительных потерь, вызванных переменной составляющей потока вынужденного намагничивания, первичные обмотки трансформатора необходимо соединять «треугольником». При этом в потоке вынужденного намагничивания остается только постоянная составляющая; переменная же составляющая с явно выраженной третьей гармоникой компенсируется потоками, которые создают токи высших гармоник с частотой, кратной трем, содержащиеся в токах первичных обмоток трансформатора и замыкающиеся по контуру, образованному этими обмотками. Расчетная мощность трансформатора при соединении обмоток «треугольником» не изменяется.

2.6.2.Трехфазная мостовая схема

Значительное количество выпрямителей трехфазного тока выполняется по мостовой схеме (схеме Ларионова), содержащей трехфазный трансформатор и выпрямительный блок из шести диодов (рис. 2.13.) Первичные и вторичные обмотки трансформатора могут соединяться по схеме звезды или треугольника. Вместе с тем мостовая схема выпрямления может применяться и без трансформатора. Диоды в выпрямительном блоке разделяют на две группы:

1) катодную, или нечетную (диоды VD 1, VD 3, VD 5), в которой электрически связаны катоды диодов и общий вывод их является положительным полюсом для внешней цепи, а аноды присоединены к выводам вторичных обмоток трансформатора;

2) анодную, или четную (диоды VD 2, VD 4, VD 6), в которой электрически связаны между собой аноды диодов, а катоды соединяются с анодами первой группы. Общая точка связи анодов является отрицательным полюсом для внешней цепи. Нагрузка подключается между точками соединения катодов и анодов диодов.

Трехфазная мостовая схема может быть представлена как последовательное соединение двух трехфазных схем со средней точкой, питаемых от одной обмотки трансформатора. В любой момент времени в катодной группе будет открыт тот диод, потенциал анода которого выше потенциалов анодов других диодов в катодной группе, а в анодной группе − диод, потенциал катода которого ниже потенциалов катодов других диодов анодной группы.

Рис. 2.13. Схема выпрямления

Работу схемы можно проследить с помощью временных диаграмм рис. 2.14. Так как режимы работы схемы на активную и активно-индуктивную нагрузку отличается незначительно, то анализ работы схемы проведем для наиболее распространенной активно-индуктивной нагрузки, принимая X a = 0, X d = 0. Диоды катодной группы открываются в момент пересечения положительных участков кривых фазных напряжений (точки а, б, в, г, д на рис. 2.14а), а диоды анодной группы − в момент пересечения отрицательных участков кривых фазных напряжений (точки к, л, м, н). Каждый диод открыт в течение одной трети периода . При мгновенной коммутации тока в трехфазной мостовой схеме в любой момент времени проводят ток на

Ответы на контрольные вопросы лаба №1

    Какие преимущества имеет схема двухполупериодного выпрямителя по сравнению с однополупериодной?

Во-первых, ток проходит через вторичную обмотку транзистора в течении каждого полупериода в разных направлениях.

Во-вторых, частота пульсаций вдвое больше и равна 100 Гц, так как за период напряжения сети ток в нагрузке и напряжение на ней дважды достигают максимума.

В-третьих, его выходное сопротивление вдвое меньше.

В-четвёртых, коэффициент пульсаций меньше и равен 0,67.

    В чём преимущество мостовой схемы выпрямителя по сравнению со схемой двухполупериодного выпрямителя?

Диоды могут быть рассчитаны на вдвое меньшее обратное напряжение, так как оно равно амплитуде переменного напряжения на вторичной обмотке.

    Начертите схему мостового выпрямителя со сглаживающим фильтром и покажите пути протекания тока.

    Сравните свойства сглаживающих LC- и RC-фильтров.

Особенностью LC -фильтров является небольшие потери, позволяющие применить их в устройствах с относительно большим током нагрузки. В маломощных выпрямителях (ток до 10-15 мА) можно применять RC -фильтры. Их недостатком является низкий КПД.

    Для чего диоды в выпрямителях могут соединяться последовательно?

Последовательное включение выпрямительных диодов делается тогда, когда необходимо увеличить суммарное допустимое обратное напряжение, прикладываемое к каждому из них.

    Почему при последовательном соединении полупроводниковых диодов в выпрямителе их шунтируют резисторами?

Обратные сопротивления выпрямительных диодов имеют большой разброс (различия достигают до одного-двух порядков), поэтому обратное напряжение, приложенное к цепи последовательно соединенных диодов, распределится неравномерно, а пропорционально их обратным сопротивлениям. Наибольшее падение напряжения будет на диоде с большим обратным сопротивлением. Это может привести к электрическому, а затем тепловому пробою р-п перехода этого диода; после этого обратное напряжение распределится между оставшимися диодами. Произойдет пробой следующего диода, у которого обратное сопротивление перехода наибольшее среди оставшихся диодов. И так один за другим диоды выйдут из строя. Чтобы этого не произошло, следует уравнять падения обратных напряжений на диодах последовательной цепочки путем шунтирования их резисторами одинакового сопротивления. Сопротивление шунтирующего резистора подбирается большим, чтобы исключить большие потери мощности на нем

    Что такое коэффициент сглаживания фильтра и как зависит его величина от ёмкости конденсаторов фильтра и тока нагрузки.

Важной характеристикой фильтров является коэффициент сглаживания - , где: - коэффициент пульсаций на входе фильтра, - коэффициент пульсаций на выходе фильтра.

При увеличении тока нагрузки амплитуда пульсаций на выходе емкостного фильтра увеличивается, а индуктивного - уменьшается. Поэтому емкостной фильтр выгодно применять при малых, а индуктивный при больших токах нагрузки. Увеличение ёмкости конденсатора уменьшает амплитуда пульсации.

    С какой частотой пульсирует напряжение на нагрузке в случае однополупериодного выпрямителя, двухполупериодного?

В случае однополупериодного выпрямителя частота пульсации напряжения на нагрузке равна входной частоте пульсаций (50 Гц), двухполупериодного - в два раза больше (100 Гц).

    Какую функцию выполняют конденсаторы C 1 , C 2 и дроссель в сглаживающем фильтре?

Конденсаторы используются для сглаживания пульсаций напряжения, а дроссели, чтобы емкости этих конденсаторов не складывались.

    Приведите пример схемы умножения напряжения.

Схемы с удвоением напряжения:

    Как влияет ёмкость конденсаторов фильтра и сопротивление нагрузки на амплитуду пульсации?

При увеличении тока нагрузки амплитуда пульсаций на выходе емкостного фильтра увеличивается, а индуктивного - уменьшается. Увеличение ёмкости конденсатора уменьшает амплитуда пульсации.

    Почему при малом токе нагрузки дроссель плохо сглаживает пульсации на выходе выпрямителя?

При возрастании тока нагрузки происходит увеличение энергии, накапливаемой в дросселе, при этом увеличивается ЭДС самоиндукции, что препятствует прохождению в нагрузку переменной составляющей тока. При этом улучшаются сглаживающие свойства фильтра.

Ответы на контрольные вопросы лаба№5

1. При каком включении транзистора входное сопротивление усилительного каскада наименьшее?

Схема с Общей Базой.

2. При каком включении транзистора усилительный каскад имеет наибольшее входное сопротивление?

Схема с Общем Коллектором.

3. Какой усилитель называют эмиттерным повторителем? Каковы его назначения, свойства?

Усилитель с ОК. Эмиттерный повторитель необходим чтоб обеспечить большое входное сопротивление усилителя.

4. Объясните назначение элементов, входящих в схему резистивно-ёмкостного усилителя на транзисторах.

Цепь R Б1 и R Б2 – это делитель напряжения источника постоянного тока. Нужен для подачи на базу напряжения, с помощью которого задаётся ток базы и тем самым устанавливается положение рабочей точки на статические вольтамперные характеристики транзистора.

R К – резистор нагрузки. По постоянному току задаёт напряжение на коллекторе, которое определяет положение рабочей точки транзистора. По переменному является нагрузкой усилителя.

R Э – это резистор температурной стабилизации положения рабочей точки транзистора

С Э – устраняет отрицательную обратную связь по переменному току.

С Р – разделительные конденсаторы. .

5. Как подаётся смещение на транзистор типа р-n-р при его включении по схеме с общим эмиттером?

В схеме с ОЭ режим транзистора по постоянному току создают: элементы R Э, С Э – цепь температурной стабилизации; R Б1 , R Б2 – делитель, создающий напряжение смещения на базе. Смещение фиксированным напряжением даёт хорошие результаты при замене транзистора и изменении температуры. Однако он не экономичен из-за потери части энергии источника питания в делителе напряжения R Б1 , R Б2 .

6. Что такое активный режим работы транзистора?

Работая в активном режиме транзистор усиливает электрический сигнал. Получить этот режим можно включив эмиттерный переход в прямом направлении, а коллекторный в обратном.

7. Что происходит с рабочей точкой транзистора при изменении сопротивления резисторов R Б1 и R Б2 ?

При изменении сопротивления резисторов R 1 и R 2 рабочая точка смещается.

8. Как изменится усиление каскада (схема с ОЭ), если исключить из него конденсатор С Э?

Каскад перестаёт усиливать сигнал.

9. Какие элементы схемы влияют на АЧХ усилителя в области нижних и верхних частот сигнала?

В области низких частот искажения зависят разделительной ёмкости С Р. Спад АЧХ в области высоких частот обусловлен ёмкостью нагрузки, если она имеется.

10. Как проявляют себя нелинейные искажения при усилении синусоидальных сигналов?

Нелинейные искажения возникают из-за того, что вольтамперные характеристики транзисторов не линейны. В результате в усилителях возникают сигналы которых не было на входе усилителя, частоты этих сигналов кратны частоте входного сигнала и носят названия гармоник. Номер гармоники целочисленный и её амплитуда обычно обратно пропорциональна их номеру.

Ответы на контрольные вопросы лаба №3

    Чем отличаются собственная и примесная электропроводности полупроводников?

Собственная проводимость возникает в результате перехода электронов с верхних уровней валентной зоны в зону проводимости.

Примесная проводимость возникает, если некоторые атомы данного полупроводника заменить в узлах кристаллической решётки атомами, валентность которых отличается на единицу от валентности основных атомов. В отличие от случая, рассмотренного выше, образование свободного электрона не сопровождается нарушением ковалентных связей, т. е. образованием дырки.

    Опишите возникновение и свойства p-n перехода.

p-n переход это тонкий слой на границе между двумя областями одного и того же кристалла. Чтоб изготовить такой переход берут, например, монокристалл из очень чистого германия с электронным механизмом проводимости. В вырезанную из кристалла тонкую пластинку вплавляют с одной стороны кусочек индия. Во время этой операции, которая осуществляется в вакууме или в атмосфере инертного газа, атомы индия диффундируют в германий на некоторую глубину. В той области, в которую проникают атомы индия, проводимость германия становится дырочной. На границе этой области возникает p-n переход. Существуют и другие способы получения p-n переходов.

    Опишите устройство и принцип действия биполярного транзистора в схеме с общим эмиттером.

Транзистор, или полупроводниковый триод, являясь управляемым элементом, нашел широкое применение в схемах усиления, а также в импульсных схемах. Отсутствие накала, малые габариты и стоимость, высокая надежность.

Биполярный транзистор представляет собой трехслойную полупроводниковую структуру с чередующимися типом электропроводности слоев и содержит два p-n перехода. И конечно же существуют транзисторы типов p-n-p и n-p-n . В качестве исходного материала для получения трехслойной структуры используют германий и кремний.

    Начертите и поясните вид входных и выходных характеристик транзистора при включении его по схеме с общим эмиттером.

А) Семейство входных характеристик () при При входная ВАХ имеет вид прямой ветви ВАХ электронно-дырочного перехода, поскольку эмиттерный переход (ЭП) и коллекторный переход (КП) при этом смещены в прямом направлении и соединены параллельно друг другу ( и внутреннее сопротивление этой эдс равно нулю. При входная ВАХ смещена вправо вследствие дополнительного падения напряжения на ЭП от протекающего по транзистору коллекторного тока. Это падение напряжения существует даже при отсутствии тока базы и соответствует участку «о-а»

Б) Семейство выходных характеристик () при изображено на рис. 14.2, б. При выходная ВАХ имеет вид обратной ветви ВАХ электронно-дырочного перехода, увеличенной в () раз (где – коэффициент передачи тока), поскольку КП при этом смещен в обратном направлении. При увеличении тока базы выходные ВАХ смещаются вверх на величину .

    Какие ещё имеются схемы включения биполярного транзистора? Перечислите их основные свойства.

У схемы с ОК, самое большое входное сопротивление и самое маленькое выходное сопротивление по сравнению с другими схемами включения транзистора. Усилитель на данной схеме не усиливает по напряжению.

У схемы с ОБ, самое маленькое входное сопротивление и самое большое выходное сопротивление по сравнению с другими схемами включения транзистора.

    Перечислите и поясните физический смысл h-параметров транзистора. Как их определить из статических характеристик?

входное сопротивление, при коротком замыкании выходной цепи ;

коэффициент обратной связи по напряжению, при холостом ходе во входной цепи. Характеризует внутреннюю обратную связь между входной и выходной цепями транзистора;

коэффициент передачи тока, при котором замыкании выходной цепи;

выходная проводимость, при холостом ходе во входной цепи

    Как изменяется коэффициент h 21э при изменении h 21б?

Чем ближе h 21б к единице, тем больше h 21э.

    Почему транзистор, включённый по схеме с общим эмиттером, может обеспечить усиление по току?

Величина является основным параметром, определяющим усилительные свойства биполярного транзистора. , так как , то транзистор включённый по схеме с ОЭ усиливает сигнал.

    Почему входное сопротивление транзистора в схеме с общим эмиттером больше, чем в схеме с общей базой?

В отличии от схемы с ОЭ, в схеме с ОБ входной сигнал поступает на эмиттерный переход, который включён в прямом направлении и не препятствует протеканию тока.

    Почему значение h 21э превышает 1?

Потому что .

    Какие электрические параметры характеризуют положение рабочей точки на статических характеристиках транзистора?

    Каковы особенности активного режима работы транзистора? Какие ещё режимы работы транзистора вам известны?

Работая в активном режиме транзистор усиливает электрический сигнал.

Насыщения – можно получить включив оба p-n перехода в прямом направлении.

Отсечки – можно получить включив оба p-n перехода в обратном направлении.

Вывод: Я исследовал статические характеристики биполярного транзистора в схеме с общим эмиттером и определение его основных параметров. В упражнение 1 при

U КЭ, В=0 график в конце отклонился вверх от других значений.

Контрольные вопросы №1-Ц

  1. Дайте определение основных логических операций и, или, не.

Дизъюнкция(ИЛИ) - это сложное логическое выражение, которое истинно, если хотя бы одно из простых логических выражений истинно и ложно тогда и только тогда, когда оба простых логических вырожения ложны.

Обозначение: F = A + B.

Конъюнкция(И) - это сложное логическое выражение, которое считается истинным в том и только том случае, когда оба простых выражения являются истинными, во всех остальных случаях данное сложеное выражение ложно.

Обозначение: F = A & B.

Инверсия(НЕ,Орицание) - это сложное логическое выражение, если исходное логическое выражение истинно, то результат отрицания будет ложным, и наоборот, если исходное логическое выражение ложно, то результат отрицания будет истинным. Другими простыми слова, данная операция означает, что к исходному логическому выражению добавляется частица НЕ или слова НЕВЕРНО, ЧТО

    На каких элементах могут быть реализованы основные логические функции?

С помощью только одних элементов ИЛИ - НЕ или только элементов И - НЕ, путем различных включений их друг с другом можно выполнить любую логическую функцию .

    Разработайте схемы электромеханических аналогов устройств для реализации логических функций И. ИЛИ, НЕ, 2И-НЕ, 2ИЛИ-НЕ.

    В чем состоят достоинства интегральных логических схем?

Преимущества ИС является высокая надежность, малые размеры и масса.

Микросхемы экономичны и уменьшают расход электроэнергии и массу ИП

Интегральные схемы безынерционны.

    Нарисуйте интегральную схему базового элемента ТТЛ и поясните его работу.

Основой транзисторно-транзисторной логики является базовый элемент на основе многоэмиттерного транзистора Т1 который легко реализуется в едином технологическом цикле с транзистором Т2. В ТТЛ-логике многоэмиттерный транзистор осуществляет в положительной логике операцию И, а на транзисторе Т2 собран инвертор. Таким образом, по данной схеме реализован базис И–НЕ.

В случае подачи на все входы схемы высокого потенциала, все переходы эмиттер–база транзистора Т1 окажутся запертыми так как потенциал в точке A примерно равен входным сигналам. В то же время, переход база–коллектор будет открытым, поэтому по цепи Eп – R1 – база Т1 – коллектор Т1 – база Т2 – эмиттер Т2 – корпус течет ток Iб нас, который открывает транзистор Т2 и вводит его в насыщение. Потенциал на выходе схемы оказывается близким к нулю (на уровне ≈ 0,1 В). Сопротивление R1 подобрано таким, чтобы, за счет падения напряжения на нем от тока Iб нас транзистора Т2, потенциал в точке A был бы ниже, чем потенциал входов, и эмиттеры Т1 оставались бы запертыми.

При подаче низкого потенциала логического нуля хотя бы на один из входов открывается этот переход эмиттер–база транзистора Т1, появляется значительный ток Iэ и потенциал в точке A, равный, приближается к нулевому. Разность потенциалов между базой и эмиттером Т2 также становится равной нулю, ток Iб транзистора Т2 прекращается, и он закрывается (переходит в режим отсечки). В результате выходное напряжение приобретает значение, равное напряжению питания (логической единицы).

Существенным недостатком рассмотренной схемы элемента И–НЕ являются низкие нагрузочная способность и экономичность ее инвертора, поэтому в практических схемах используют более сложный инвертор

Понравилась статья? Поделитесь ей