Контакты

Стабилизированный бп для чайников на L7809. Простой регулируемый стабилизированный блок питания Схема стабилизированного источника питания

В данной статье расскажем про универсальный блок стабилизированного питания, про их основные требования и сбор схемы описанного блока питания.

В различных источниках – интернете, книжных изданиях встречаются схемы стабилизированных источников питания. Как правило, чем совершеннее (лучше) схема, тем она сложнее.

Источники питания стабилизированным напряжением имеющие широкие пределы регулирования выходного напряжения, высокую нагрузочную способность, защиту от превышения тока нагрузки и при этом – низкий коэффициент пульсаций классически состоят из следующих основных элементов:

— понижающий трансформатор;

— выпрямительный мост;

— сглаживающие фильтры;

— схема компенсационного стабилизатора напряжения.

Дополнительно используются:

— контрольные измерительные приборы;

— схема (элементы) защиты от перегрузки.

Мной были изучены различные варианты лабораторных блоков стабилизированного питания, схемы которых публикуют в различных изданиях.

Основные требования, предъявленные к источникам питания:

1. Пределы регулировки постоянного выходного напряжения – 0…25 вольт;

2. Максимальный ток нагрузки – 10 А;

4. Нестабильность выходного напряжения при нестабильности напряжения в сети 20% — не более 0,3%;

5. Порог срабатывания защиты по току – от 6 А и выше (устанавливается по желанию).

Эти требования довольно высоки и очень мало вариантов получения таких характеристик без значительного усложнения схем.

В результате изучения и переработки схем мощных источников питания была разработана наиболее оптимальная простейшая схема источника стабилизированного напряжения, полностью удовлетворяющая высоким предъявленным требованиям по параметрам.

Для уменьшения количества элементов (упрощения схемы), за основу стабилизатора был взят микросхемный стабилизатор напряжения с плавной регулировкой выходного напряжения – LM317 (его отечественный аналог – КР142ЕН12А). Исполнена микросхема в обычном транзисторном корпусе ТО-220. Возможна замена этой микросхемы на LM350, LM338, LТ1083 (аналог – КР142ЕН22А), LТ1084 (аналог – КР142ЕН22), LТ1085 (аналог – КР142ЕН22Б). Все эти микросхемы обладают хорошей нагрузочной способностью (в зависимости от микросхемы – от 3-х, до 7,5 ампер). Они все имеют собственную защиту от перегрузки по току, но так как предъявлено требование к выходному току в 10 ампер, то эта защита в моей схеме не используется. Кроме того, имеется недостаток – минимальное напряжение, которое микросхема выдаёт – 1,25 вольта, а нам надо – 0 вольт. Для возможности получения выходного напряжения от нуля, радиолюбителями предлагаются схемы с дополнительными источниками отрицательного напряжения смещения, но мы пойдём по другому пути.

Для получения выходного напряжения от 0 вольт и повышения нагрузочной способности до тока более 10 ампер, в представленной мной схеме используются два составных транзистора КТ827А. Суть снижения минимального предела выходного напряжения до нуля состоит в том, что эти самые 1,25 вольта «падают» на базово-эмиттерных переходах транзисторов. О том, что это за падение, я описывал в своей статье Стабилизаторы напряжения, их расчёт . Кроме того, поставив в схему два составных транзистора КТ827А мы «убиваем второго зайца» – значительно увеличиваем нагрузочную способность блока питания, подняв запас по току до 40 ампер, чем повышаем надёжность блока питания. Для выравнивания токов нагрузки между транзисторами в эмиттерных цепях транзисторов используются резисторы R13 и R14. Регулировка выходного напряжения блока питания осуществляется резистором R10.

В основном все «продвинутые» изученные мной схемы в качестве элементов защиты используют либо оптопары, либо электромагнитные реле. Мне это крайне не понятно потому, что оптопары обычно используются для гальванической развязки, а в представленных схемах никакой гальванической развязки и не требовалось. Электромагнитные реле, это довольно медлительный элемент схемы, способный «залипать» и тогда Ваш блок питания всё равно сгорит. Реле – это элемент электрики, а не электроники. Я лично использую электромагнитное реле, в крайнем случае, когда транзисторные и тиристорные схемы не могут заменить реле.

Разработанная мной схема защиты проста и надёжна. Работает она следующим образом:

В качестве элемента, на котором измеряется ток, используется резистор R2 на 0,1 Ом. При токе нагрузки, равном 6 ампер, на нём падает напряжение равное ровно 0,6 вольта (по закону Ома). Если шлиц резистора R4 находится в крайнем правом положении, то это напряжение в 0,6 вольта прикладывается к переходу эмиттер-база транзистора VT1. Транзистор открывается. Ток, протекающий через открытый транзистор VT1, открывает транзистор VT2, а тот в свою очередь откроет транзистор VT3. Открытый транзистор VT3 закорачивает вывод 1 микросхемы (управления выходным напряжением) на корпус и выходное напряжение стабилизатора падает до нуля. Транзисторы VT1 и VT2 совместно представляют собой схему тиристорного управления, они «самоблокируются» в открытом состоянии двумя токами, протекающими по пути: 1) плюс выпрямителя – эмиттер VT1 – база VT1 – коллектор VT2 – эмиттер VT2 – элементы R7, VD3, R8, R9, транзистор VT3 – минус выпрямителя; 2) плюс выпрямителя – эмиттер VT1 – коллектор VT1 – база VT2 – эмиттер VT2 – элементы R7, VD3, R8, R9, транзистор VT3 – минус выпрямителя. Одновременно загорается светодиод VD3 «Перегрузка». Для отключения защиты, необходимо кратковременно нажать кнопку S2, которая разорвёт цепь протекания первого тока и транзисторы закроются. Если причина срабатывания защиты не устранена (например замыкание выходных клемм), то нажатие кнопки не сбросит защиту. Для уменьшения чувствительности схемы защиты по току, необходимо двигать ползунок резистора R4 из крайнего правого положения влево. Настройка производится экспериментально, путём кратковременного создания соответствующей нагрузки. Я сделал просто: в качестве нагрузки использовал внешний 10-ти амперный Амперметр, подключив его напрямую к выходным клеммам. Повышая выходное напряжение резистором R10 от нуля, я добился срабатывания схемы защиты на выбранном мной уровне (9,5А). Дополнительная защита по первичной обмотке – предохранитель FU1.

Важно

Особое внимание следует уделить выбору трансформатора. Он должен быть достаточной мощности. Я использую всё тот же ТПП-320-220-50, который я использовал и в зарядном устройстве , подобрав выходное напряжение на выходе выпрямителя VD1, равным 30 вольтам, путём выбора определённых обмоток. Не смотря на использование мощных транзисторов, при эксплуатации блока питания необходимо помнить, что нагрузочные способности любых блоков питания ограничены суммарной рассеиваемой мощностью выходных транзисторов. В данном случае, это — 250 ватт (по справочнику). Силовые транзисторы будут сильно греться и могут выйти из строя от падения на их переходах отдаваемого трансформатором напряжения. Так, при выходном напряжении 2,5 В и токе нагрузки 9 А, рассеиваемая на транзисторах мощность будет равна (30 – 2,5) * 9 = 247,5 Ватт. Эта работа «на пределе» приведёт к быстрому выходу транзисторов из строя от перегрева. Поэтому транзисторы необходимо установить на радиаторы достаточного размера. Я использовал в качестве радиаторов алюминиевый корпус своего блока, установив транзисторы через слюдяные прокладки.

В качестве выпрямителя VD1, как и в зарядном устройстве , я использовал силовой выпрямительный мост типа КЦ419 (импортный аналог – МВ5010), как результат – не нужна изоляция, компактность и запас по току до 25 ампер (МВ5010 – до 16А). Он также прикручивается непосредственно на корпус.

При сборке конструкции обязательно учтите тот факт, что ушко крепления микросхемы соединено с входным выводом микросхемного стабилизатора. Поскольку её выходные токи не превышают 0,2 А, то можете её даже не прикручивать на радиатор, но лучший вариант, если вы прикрутите её через диэлектрическую прокладку на радиатор, на котором стоят выходные транзисторы. Таким образом, Вы сможете использовать тепловую защиту, встроенную в микросхему. Если установить транзисторы и микросхему на отдельный изолированный теплоотвод, то никаких изолирующих прокладок не потребуется.

Для контроля тока использован миллиамперметр, резистор R3 подбирают таким, чтобы при подаче напряжения в 1 вольт, было отклонение стрелки прибора на максимум шкалы (на значение = 10). Вольтметр использован заводской, на 25 вольт, без дополнительных добавочных резисторов.

Большинство радиоэлементов блока питания размещено на радиоплате(печатной плате) размерами 130 х 75 мм, изготовленной из одностороннего фольгированного текстолита. Размещение элементов приводится на рисунке ниже. Микросхема D1 установлена со стороны печатных проводников, под её ушко просверлено большое отверстие в плате (чтобы можно было прикрутить микросхему к металлическому корпусу винтом).

Правильно собранная конструкция начинает работать сразу. Настройке подлежит только установка уровня срабатывания защиты по току нагрузки. Если не установите, то блок всё равно будет выдавать требуемое Вам напряжение, но без защиты. В крайнем случае – самое правое положение ползунка резистора R4 соответствует защите при токе около 6 Ампер. Обратите внимание, что при включении блока с выставленным на выходе выходным напряжением отличным от нуля, сразу срабатывает защита. Это нормальная работа, связана с тем, что на выходе блока питания стоит конденсатор С5 достаточно большой ёмкости. Для работы блока необходимо нажать кнопку сброса аварии. Впрочем, можете уменьшить номинал конденсатора на целый порядок, но это увеличит чувствительность схемы защиты к резким импульсным изменениям нагрузки, и на больших токах увеличит коэффициент пульсаций.

"Простой стабилизированный БП на супердоступных деталях"


С чего начинается лаборатория радиолюбителя? Наверное с 3-х предметов:
паяльника, мультиметра и блока питания. Не секрет, что часто значение последнего
предмета понимаешь только после того, как сгорит дефицитный транзистор или дорогая микросхема.. Недавно решил я "обновить" свой видавший виды БР, хотелось уменьшить нижний предел с 1,5в до нуля (если "аппарат" питается от одной батарейки на 1,5в надо иметь
возможность проверить, что будет при разряде элемента). Погуглив с удивлением обнаружил,
что всё многообразие разбросанных в сети схем делится на 2 больших категории: либо это
модификации LM317 (КРЕН12А) либо это сложные конструкции с двуполярным питанием операционных усилителей, либо что-то дефицитно-экзотическое.
Возникла идея сделать БП на базе самого доступного и дешевого в мире операционника
LM324 (наш аналог К1401УД2). Недавно довелось чинить паяльную станцию, в которой стоял этот усилитель, и тогда я узнал, что он прекрасно работает с сигналами близкими к 0 даже
при однополярном низковольтном питании. Исходя из этого и была синтезирована схема.
В качестве источника опорного напряжения я применил TL431. Почему не стабилитрон или КРЕНку? дело в том, что у стабилитронов довольно высока нестабильность напряжения в
зависимости от тока и температуры. КРЕНки (отечественные и импортные 78ХХ) обычно склонны к дрейфу выходного напряжения от температуры и приложенного входного напряжения. TL431 представляет из себя регулируемый источник стабильного опорного напряжения. Прекрасно работает стабилитроном с выходным напряжением от 2,5 до 37В. Очень стабильна.
Применение в качестве регулирующего транзистора со структурой pnp позволило создать
стабилизатор с малым падением напряжения. При максимальных значениях установленного напряжения оно может достигать входного-0,5В.
Регулируемая защита по току отличается широким пределом регулировки. Можно установить ток срабатывания от единиц милиампер до 3-х ампер. В качестве шунта используется резистор 0,1 Ом от импульсных блоков питания.
Переменные резисторы для установки тока и напряжения лучше применить логарифмические. Тогда можно более плавно выставлять малые значения напряжения и тока.

Вашему вниманию предлагается проверенная конструкция универсального блока питания. Данный простой источник питания, выполнен на мощных составных транзисторах. Основное преимущество схемы в том, что БП пригоден не только для питания различных электронных схем, но и для зарядки различных, в том числе и мощных свинцовых аккумуляторов.

Напряжение на выходе БП, с данными значениями деталей, регулируется от нуля до 15В. Если поставить трансформатор и стабилитрон на большее напряжение, то и макимальный вольтаж выхода тоже возрастёт. Диоды любые выпрямительные, на соответствующий нагрузке ток с двухкратным запасом. Конденсатор С1 на напряжение не менее 25В. Старайтесь не использовать советские алюминиевые электролиты - они часто выходят из строя. Транзисторы заменимы на аналогичные по мощности и структуре.


Обратите внимание, что катоды диодов и коллекторы обеих транзисторов соединены между собой - значит их можно разместить на одном большом радиаторе без всяких изолирующих прокладок. Если поставить конденсаторы, показанные на схеме пунктиром, можно использовать устройство в качестве блока питания. В этом случае после диодов тоже не помешает конденсатор 1000-2000мкФ 25В. А если требуется только режим зарядного устройства (как это сделано в авторском варианте на фотографии), то можно их исключить.


Готовый стабилизированный источник питания размещается в любом подходящем корпусе. Наружу для удобства контроля выводится зелёный светодиод - сеть 220В, и красный - выход. Причём чем больше напряжение на выходе - тем ярче он будет светиться. Естественно подключают светодиод не напрямую между плюсом и минусом, а через резистор 1-2кОм.

Блок питания нужен всем. Музыканту-металлисту надо чем-то питать свои «примочки» к электрогитаре, радиолюбителю — приемники или всякие поделки на светодиодах-транзисторах, простому люду — антенные усилители к телевизору и так далее. Но купить готовое устройство не всегда получается — хотя бы даже из-за цены. Тем более нет на это желания, когда точно знаешь, что без дела валяется исправный понижающий трансформатор. Вот его-то мы и приспособим давать чистые девять вольт.

С дополнениями и изменениями от 09.11.15

Блок питания собран уже бессчетное количество раз. При правильном монтаже и исправных компонентах запускается всегда. Допускаются отклонения в номиналах элементов.

«Сердцем» блока питания (далее — БП) является понижающий трансформатор , без него нет смысла городить огород. Называется он так оттого, что понижает переменное розеточное напряжение 220 вольт в переменное же другого напряжения. Например, до 36, или 12, или даже 5. Но для наших целей необходим трансформатор, у которого на вторичной, выходной обмотке (не сетевой, та — входная и первичная) будет 12-15 вольт «переменки». Можно и немного больше, до 20, но нецелесообразно. Хорошо подходят трансформаторы из отслуживших свое магнитофонов, радиоприемников, других блоков питания, в особенности, если ранее устройство как раз и жило под напряжением девять вольт. В иллюстрациях к этой статье, например, я использовал полусгоревший трансформатор от роутерного БП. От скачка напряжения в нем сработал термопредохранитель, и напряжение на выходе исчезло (в современные трансформаторы встраивают такие одноразовые предохранители, которые разрывают цепь в случае перегрева. А перегрев может наступить либо тогда, когда через предохранитель «первички» течет большой ток (надолго повысилось напряжение в сети или трансформатору дали неподъемную нагрузку), либо когда перегревается сам трансформатор (его перегрузили или в корпусе БП очень-очень жарко). Предохранитель скрыт в начале первичной обмотки, и можно было его заменить аналогичным, но я просто бросил перемычку в обход. А для безопасности можно добавить обычную плавкую вставку 0,2 — 0,5 А).

Еще одна важная характеристика трансформатора — выдаваемый им ток. Тут уже надо примерно знать, сколько будет потреблять устройство, которому мы делаем БП. Для небольших светодиодных поделок хватит и 100 мА (а это пять светодиодов, подсоединенных параллельно друг к другу, причем установлены максимальные для них 20 мА), радиоприемники тоже много не едят (до 250 мА), простейшая гитарная «примочка»-дисторшн, питаемая от «Кроны», нуждается в 10-20 мА. Уже по внешнему виду трансформатора можно примерно судить, на какой ток он рассчитан. Главное — не перегружать его, а если нужно питать что-то прожорливое (ток более 1 А), то и блок питания должен быть соответствующий. Симптомы перегрузки, когда трансформатор, что называется, «не вывозит» — падает напряжение, греется магнитопровод и обмотки, появляется гудение, и, наконец, дым. А электроника вся на дыме работает. И как только он из нее выходит — она и перестает…

Далее нужен выпрямитель . Его задача — преобразование переменного тока в постоянный. Все описанные ранее устройства питаются постоянным током. Я использую готовый диодный мост, но можно заменить его четырьмя одинаковыми диодами с адекватным запасом тока (1N4004 хватит с головой). Подключив диодный мост ко «вторичке» трансформатора, можно увидеть, что ее 12 переменных вольт превращаются в 11 или даже 10,8 постоянных . Так и должно быть. Это диоды открываются при напряжении 0,6 вольта, а в диодном мосту одновременно работают два диода из четырех. Вот и пропадает по 1,2 вольта на каждом полупериоде колебаний.

И теперь, собственно, та часть, из-за которой блок носит гордое название «стабилизированный», то есть имеющий постоянное напряжение на своем выходе вне зависимости от того, что у него на входе (в разумных пределах, конечно). С табилизатор . Я использую трехногую микросхему 7809, где 78 указывает на стабилизацию положительной полярности напряжения, а 09 — число стабилизированных вольт (нетрудно догадаться, что если нужно питать какое-то пятивольтовое устройство, то в магазине надо спрашивать 7805, а трансформатор можно взять с чуть меньшим напряжением на «вторичке»). Три ноги у нее не случайно — на одну приходит нестабилизированное входное напряжение, другая присоединяется к общей шине («минусу»), а с третьей снимается стабилизированное постоянное напряжение. Для нормальной работы микросхем этой серии необходимо, чтобы входное напряжение было хотя бы на 2 вольта выше выходного. То есть 9+2=11 В. Столько же и остается после диодного моста, мы отлично сюда попадаем.


Глядя на график выпрямленного диодным мостом напряжения, язык не повернется назвать его постоянным. Оно пульсирует. Для сглаживания этих «горбов» нужны конденсаторы. В принципе, вполне хватит двух электролитических, но по правилам хорошего тона, чтобы продлить им жизнь, хорошо бы еще вставить и два керамических на 100-200 нФ. Электролитические я использую на 470-1000 мкФ, 25 вольт по входу и 16 вольт по выходу. Почему так, в чем разница? Отвечаю. Если к диодному мосту поцепить электролитический конденсатор, то на его ножках образуется напряжение, в 1,41 раза большее, чем на мосту. 11*1,41=15,51 В. Ставить конденсатор на максимальных 16 вольт, честно говоря, с таким «запасом» немного неправильно. Если на «первичку» попадет не 220, а 240 вольт, то и на «вторичке» уже будет явно не 11. И репу шестнадцативольтового конденсатора может разорвать. Закидав его ошметками все, что рядом. По этой же причине пробный пуск любого устройства, содержащего электролитические конденсаторы, надо осуществлять так, чтобы они не были направлены в сторону рук, лиц и глаз. Желательно даже накрыть чем-то «шайтан-машину» и нацепить защитные очки. А вот по девятивольтовому выходу конденсатор на 16 вольт — самое оно. Можно, конечно, и стовольтовый поставить, но он: а) дороже, б) больше размерами. Ничто не мешает и не 470 мкФ поставить, а больше. 1000 мкФ, 4700 мкФ, 10000 мкФ, наконец. Чем больше — тем менее будет подвержена влиянию перепадов напряжения цепь. Часто можно наблюдать, что, выдернув из розетки шнур радиоприемника, он еще поет несколько секунд, затихая. Но со временем при таких же махинациях приемник поет все короче и короче. Это конденсаторы стареют, теряют емкость. Можно, конечно, заставить всю комнату спараллеленными конденсаторами на 10000 мкФ, и тогда приемник, пожалуй, сможет автономно проработать целый день после их зарядки, но чем больше емкость конденсатора, тем он: а) дороже, б) больше размерами. Где-то это уже читали? Такая вот корреляция (связь между несколькими величинами).

Теперь — что касается «продления жизни». Как в выпрямленном, так и стабилизированном напряжении могут существовать высокочастотные переменные составляющие. Так, при стандартной частоте пульсаций сети 50 Гц после диодного моста уже будет 100 Гц, а как-то пробравшиеся ВЧ-шки — это килогерцы частоты. Грозовые разряды, искры от щеточно-коллекторного узла электродвигателей, «шумные» блоки питания… Электролитические конденсаторы очень не любят высокочастотные колебания и быстрее деградируют, если подвержены такому влиянию. Их удел — сглаживание медленных пульсаций. Поэтому параллельно каждому электролитическому конденсатору припаивается керамический, который как раз и рассчитан на работу с высокими частотами. Получается очень эффективный тандем.

Еще понадобятся соединительные провода и плата, на которую это все будет монтироваться. Использовать провода из «витой пары» не рекомендую — «дедушкиным» паяльником (с медным жалом, оловом и канифолью) они плохо паяются, да и вообще — очень ломкие. Что касается платы — в любом уважающем себя радиомагазине есть такая штука, как «макетная плата». Это текстолитовое или гетинаксовое основание с контактными площадками, расположенными в строгом порядке. Расставляй элементы, как хочешь, соединяй проводками, перемычками, или просто запаивай неиспользуемые площадки. Профи могут вытравить плату (я думаю, что для такого стабилизатора есть немало вариантов «печаток»), но профи и без моих советов, небось, уже давным-давно собрали такой БП, и не один.
Ладно, слов тысяча, а дел пока нет. Просто хотелось дать чуть-чуть теории.

Приступаем?


Типовая схема БП на 7809. Слева направо, сверху вниз: обычный проволочный предохранитель (нет у меня, равно как и теплового, хотя по-хорошему — надо), сетевой трансформатор, диодный мост, «электролит», «керамика», стабилизатор, «электролит», «керамика». Вариантов этой типовой схемы много, и как ни собери — почти всегда правильно. Кстати, отечественный аналог 7809 — микросхема КР142ЕН8А, в просторечии именуемая просто «кренкой». Нормально работает при напряжениях на входе +11,5…35 В. У нас есть 15,5 В. Выходной ток 7809 — 1-1,5 А (в зависимости от корпуса), лишь бы трансформатор «тащил». Да, если в планах питание устройств с большим током потребления, то надо позаботиться о радиаторе для стабилизатора (приемники с их максимальными 250 мА микросхему не нагревают, можно обойтись без него).


Необходимое оборудование. Пинцет-самозахват (не понадобился), отсос припоя (если случайно соединил не те дорожки или еще как накосорезил), проволочный припой, изолента отвратительного качества (лучше не экономить), бокорезы, утконосы (не пригодились), паяльник с «вечным» жалом и железная мочалка для его очистки (обычная кухонная, для сковородок).


Необходимые ресурсы. Плата, трансформатор (сетевой кабель не показан, хотя он нужен — не забудьте!), светодиод с резистором (мимопроходили), диодный мост, 7809, два конденсатора, керамический конденсатор; мультиметр с еще одной «керамикой» показывает ее емкость — 125 нФ. Нам подходит. Написано на корпусе, что 150, но кто-то из них явно врет.




К трансформатору подпаиваем сетевой шнур. С «первичкой» надо быть очень осторожным, там — опасное для жизни напряжение . Как только припаяли — замотать это место изолентой от греха подальше.

Кстати, если случилось так, что вы, крутя трансформатор в руках, запутались уже, где какая обмотка, то поможет мультиметр. У понижающего трансформатора «вторичка» имеет очень малое сопротивление, буквально доли ома, а на «первичке» он обычно показывает 300-600 Ом.


Со «вторички» идут 12 вольт «переменки».



Понемногу собираем плату.
Универсального расположения деталей нет, пусть каждый делает так, как ему удобно. Я стараюсь экономить место, ведь платы не очень дешевы. Да и вообще, «керамику» лучше ставить как можно ближе к стабилизатору — так надо для его корректной работы.


У меня, например, три экземпляра такого БП, и все собраны с разным расположением деталей. И ничего, работают.


Обратная сторона.



Можно, конечно, и иначе, расставляя элементы так, как на схеме: диодный мост, «электролит», «керамика», стабилизатор, «электролит», «керамика».
В этот раз у меня вышло так.


По низу идет выходная шина, в середине — общий провод-«минус», иногда для краткости именуемый «землей».



Уже на этом этапе блок полностью готов.
Но мне захотелось покуражиться. Не зря же, пока я разбирал завалы, мне в руки попал светодиод. Вот и пусть светит, развлекает коллектив блока питания.


Светодиод — прибор токовый. Это значит, что он светит, когда через него идет ток. Причем ток этот надо ограничивать (обычно — 20 мА), потому что в противном случае диод попытается сожрать все, что ему дает БП, и, естественно, сгорит. Как тот медведь, что по лесу шел. У нас даже есть такая шутка радиолюбительская. «Шел светодиод по плате, видит — шина девятивольтовая. Сел на нее и сгорел». А для ограничения тока служит резистор. Вы не поверите, но он так и называется — токоограничивающий. Для девяти вольт питания он может составлять 500 Ом, но я поставил 5,6 кОм — уж больно ярко светил.


То же самое.



Финальные замеры.
На конденсаторе перед стабилизатором — расчетных 15 с лишком вольт.


А на выходе — 9,2 вольта. Страшного ничего нет: все 7809, что мне попадались, чуть завышают планку. Даже свежая «Крона», эталон девятивольтовости, будет выдавать больше девяти вольт.


Обрезанные ножки выводных элементов рекомендую сохранить для будущих проектов — на перемычки какие-нибудь.



А вот я вырезал из общей макетной платы все, что надо.
Вырезать можно разными способами, я за неимением подходящего инструмента пользуюсь канцелярским ножом. Но он очень не любит резать платы и быстро тупится.

Вот и все. Не сложно?


А радиоприемник мой очень доволен таким блоком. Сейчас с БП сложилась нелегкая ситуация. Старая радиоаппаратура очень не любит современные импульсные блоки питания. Да, они легкие и компактные, но сильно шумят во всех диапазонах, порой даже станций не слышно, один только писк, визг, треск. А трансформаторные могут только слегка гудеть. Даже включенный компьютер или ноутбук рядом с радиоприемником очень сильно «фонит».

А про свой радиоприемник, надеюсь, я расскажу в следующей статье. Мы будем его ремонтировать, проводить ему профилактику и немного модернизировать, а так же узнаем, что интересного можно послушать в диапазонах, которых больше нет в современных аппаратах.

Дополнение от 25.02.16

Например, к вам в руки попал блок питания от роутера с «переменкой» 9-12 вольт на выходе. Если размеры позволяют, то почему бы не встроить стабилизатор внутрь?



Корпус надо аккуратно расколоть по шву с помощью ножа и ощутимого постукивания по ножу. Электронику можно всю сделать на плате, но я не стал заморачиваться и спаял «навесом», кое-где прихватив термоклеем. Светодиод — по желанию. Обратно половинки склеиваются суперклеем.

Иногда приходится заменять штекер. Наиболее распространены 5,5/2,1 мм (наружный/внутренний диаметр) и 5,5/2,5 мм.



По возможности лучше брать те, что справа, с желтым изолятором. Они сделаны не так халтурно.

Дополнение от 05.06.16

Бывают случаи, когда нужно нестандартное напряжение — например, 8,7 вольт.


Применив L7808 и кремниевый диод (Uпр = 0,7 В), на выходе можно получить искомые 8,7 вольт. Включая несколько диодов последовательно, можно еще больше поднять напряжение: для двух кремниевых это будет уже почти плюс 1,4 вольта к тому, на что запрограммирован сам стабилизатор. Диод (или диоды) надо выбирать соразмерно потребляемому нагрузкой току — для мелочи пойдет и КД522 (до 100 мА), а для чего покрупнее — хотя бы и 1N4001 (1 А).

Кремниевый диод добавляет 0,6-0,7 вольт, германиевый - 0,3-0,4 В. Можно с успехом их компоновать, максимальный ток такого самодельного стабилизатора определяется максимальным током самого хилого элемента.

Этот блок питания на микросхеме LM317, не требует каких – то особых знаний для сборки, и после правильного монтажа из исправных деталей, не нуждается в наладке. Несмотря на свою кажущуюся простоту, этот блок является надёжным источником питания цифровых устройств и имеет встроенную защиту от перегрева и перегрузки по току. Микросхема внутри себя имеет свыше двадцати транзисторов и является высокотехнологичным устройством, хотя снаружи выглядит как обычный транзистор.

Питание схемы рассчитано на напряжение до 40 вольт переменного тока, а на выходе можно получить от 1.2 до 30 вольт постоянного, стабилизированного напряжения. Регулировка от минимума до максимума потенциометром происходит очень плавно, без скачков и провалов. Ток на выходе до 1.5 ампер. Если потребляемый ток не планируется выше 250 миллиампер, то радиатор не нужен. При потреблении большей нагрузки, микросхему поместить на теплопроводную пасту к радиатору общей площадью рассеивания 350 – 400 или больше, миллиметров квадратных. Подбор трансформатора питания нужно рассчитывать исходя из того, что напряжение на входе в блок питания должно быть на 10 – 15 % больше, чем планируете получать на выходе. Мощность питающего трансформатора лучше взять с хорошим запасом, во избежание излишнего перегрева и на вход его обязательно поставить плавкий предохранитель, подобранный по мощности, для защиты от возможных неприятностей.
Нам, для изготовления этого нужного устройства, потребуются детали:

  • Микросхема LM317 или LM317T.
  • Выпрямительная сборка почти любая или отдельные четыре диода на ток не менее 1 ампер каждый.
  • Конденсатор C1 от 1000 МкФ и выше напряжением 50 вольт, он служит для сглаживания бросков напряжения питающей сети и, чем больше его ёмкость, тем более стабильным будет напряжение на выходе.
  • C2 и C4 – 0.047 МкФ. На крышке конденсатора цифра 104.
  • C3 – 1МкФ и больше напряжением 50 вольт. Этот конденсатор, так же можно применить большей ёмкости для повышения стабильности выходящего напряжения.
  • D5 и D6 – диоды, например 1N4007, или любые другие на ток 1 ампер или больше.
  • R1 – потенциометр на 10 Ком. Любого типа, но обязательно хороший, иначе выходное напряжение будет «прыгать».
  • R2 – 220 Ом, мощностью 0.25 – 0.5 ватт.

Перед подключением к схеме питающего напряжения, обязательно проверьте правильность монтажа и пайки элементов схемы.
Сборка регулируемого стабилизированного блока питания
Сборку я произвел на обычной макетной платы без всякого травления. Мне этот способ нравится из-за своей простоты. Благодаря ему схему можно собрать за считанные минуты.












Проверка блока питания
Вращением переменного резистора можно установить желаемое напряжение на выходе, что очень удобно.

Видео испытаний блока питания прилагается

Вам может понравиться:

  • Вязаные коврики крючком: интересные модели, схемы и…
  • Автономная gsm сигнализация из мобильного телефона…
Понравилась статья? Поделитесь ей