Контакты

True RMS измеритель мощности с функцией контроля и управления нагрузкой. Почему следует выбирать приборы класса True RMS? Что такое RMS

Переменные напряжения и токи могут характеризоваться различными показателями. Например, для переменное периодическое напряжение произвольной формы u (t ), помимо амплитудных значений может характеризоваться:

  • средним значением (постоянной составляющей)
  • средневыпрямленным значением
  • эффективным или действующим значением

Чаще всего, о действии переменного напряжения или тока судят по средней за период мощности, разогревающей активное сопротивление R по которому проходит переменный ток (или на которое подается переменное напряжение). Процесс нагрева инерционный и обычно его время намного больше периода T переменного напряжения или тока. В связи с этим принято пользоваться действующим значением синусоидального напряжения и тока. В этом случае:

Отсюда ясно, что для измерения действующего значения синусоидального напряжения или тока достаточно измерить их амплитудное значение и поделить на√2 =1.414 (либо умножить на 0.707).

Вольтметры и амперметры переменного тока часто служат для измерения уровней переменного напряжения и тока несинусоидальной формы . Теоретически такие сигналы могут быть представлены рядом Фурье, состоящим из суммы постоянной составляющей сигнала, первой его гармоники и суммы высших гармоник. Для линейных цепей в силу принципа суперпозиции мощность несинусоидального сигнала определяется мощностью всех его составляющих. Она зависит от состава гармоник сигнала, определяемого формой сигнала.

Как правило, независимо от метода измерений они обычно градуируются в эффективных значениях синусоидального переменного напряжения или тока. Обычно в этом случае с помощью двухполупериодного выпрямителя напряжения или токи выпрямляются и возможно измерение их средневыпрямленного напряжения (часто его называют просто средним, но это не совсем точно - см. выше). Отклонение формы переменного напряжения от синусоидальной принято учитывать коэффициентом формы:

k ф = U д /U ср

Для прямоугольного сигнала (меандра) k Ф =1, а для синусоидального k Ф =π/2√2=1.1107. Такое различие вызывает большую разницу показаний даже в этих простых случаях.

Ныне широкое применение получили персональные компьютеры, сотовые телефоны с импульсным режимом работы передатчиков, импульсные и резонансные преобразователи напряжения и источники питания, электроприводы с регулируемой скоростью и другое оборудование, потребляющее токи в виде кратковременных импульсов или отрезков синусоиды. При этом среднеквадратическое значение сигналов должно учитывать все гармоники его спектра. В этом случае говорят, что оно является истинным среднеквадратическим значением (TrueRMS или TRMS ).

К сожалению, при измерениях напряжений и токов с различными, отличными от синусоидальных, временными зависимостями возникают большие проблемы из-за нарушения соотношений между средневыпрямленными или амплитудными значениями переменного напряжения или тока и их действующими значениями. Обычные измерители напряжений и токов с усредненными показаниями в этом случае дают недопустимо большую погрешность см. рис. Упрощенное измерение действующего значения токов порою может дать занижение до 50% истинных результатов.

Рис. 1. Сравнение различных видов измерения меняющихся напряжений и токов

Не знающий этого пользователь может долго удивляться, почему предохранитель в устройстве на ток 10 А регулярно сгорает, хотя по показаниям амперметра или обычного мультиметра ток составляет допустимую величину в 10 А. При отклонении кривой измеряемого напряжения или тока от идеальной синусоидальной формы уточнение с помощью коэффициента 1,1107≈1.1 становится недопустимым. По этой причине измерители с усредненными показаниями зачастую дают неверные результаты при измерении токов в современных силовых сетях. В связи с этим были созданы приборы, измеряющие действительно истинное среднеквадратическое значение переменного напряжения и тока любой формы, которое определяется по нагреву линейного резистора, подключенного к измеряемому напряжению.

В наше время современные мультиметры, измеряющие истинное среднеквадратическое значение переменного напряжения или тока (не обязательно синусоидальных), обычно помечаются лейбом True RMS. В таких измерителях используются более совершенные схемы измерения, нередко со средствами микропроцессорного контроля и коррекции. Это позволило существенно повысить точность измерения и уменьшить габариты и массу приборов.

Точные измерения - трудная задача, стоящая перед технологами и специалистами по обслуживанию современных производств и оборудования различных организаций. В нашу повседневную жизнь все больше и больше входят персональные компьютеры, приводы с регулируемой скоростью и другое оборудование, имеющее несинусоидальные характеристики потребляемого тока и рабочего напряжения (в виде кратковременных импульсов, с искажениями и т.п.). Такое оборудование может вызвать неадекватные показания обычных измерителей с усреднением показаний (вычисляющих среднеквадратическое значение).

Почему следует выбирать приборы класса True-RMS?

Говоря о значениях переменного тока, мы обычно имеем в виду среднюю эффективную выделяемую теплоту или среднеквадратическое (RMS) значение тока. Данное значение эквивалентно значению постоянного тока, действие которого вызвало бы такой же тепловой эффект, что и действие измеряемого переменного тока, и вычисляется по следующей формуле:

.

Самый распространенный способ измерения такого среднеквадратического значения тока при помощи измерительного прибора заключается в выпрямлении переменного тока, определении среднего значения выпрямленного сигнала и умножении результата на коэффициент 1,1 (соотношение между средним и среднеквадратическим значениями идеальной синусоиды).

Однако, при отклонении синусоидальной кривой от идеальной формы данный коэффициент перестает действовать. По этой причине измерители с усреднением показаний зачастую дают неверные результаты при измерении токов в современных силовых сетях.

Линейные и нелинейные нагрузки

Рис. 1. Кривые напряжения синусоидальной и искажённой формы.

Линейные нагрузки, в состав которых входят только резисторы, катушки и конденсаторы, характеризуются синусоидальной кривой тока, поэтому при измерении их параметров проблем не возникает. Однако в случае нелинейных нагрузок, таких как приводы с регулируемой частотой и источники питания для офисного оборудования, при наличии помех от мощных нагрузок имеют место искаженные кривые.

Рис. 2. Кривые тока и напряжения блока питания персонального компьютера.

Измерение среднеквадратического значения токов по таким искаженным кривым с использованием обычных измерителей может дать в зависимости от характера нагрузки значительное занижение истинных результатов:


Класс прибора
Тип нагрузки / формы кривой
ШИМ (меандр) однофазный диодный
выпрямитель
трёхфазный диодный
выпрямитель
RMS корректно завышение на 10% занижение на 40% занижение 5%...30%
True RMS корректно корректно корректно корректно

Поэтому у пользователей обычных приборов возникнет вопрос, почему, например, 14-амперный предохранитель регулярно перегорает, хотя по показаниям амперметра ток составляет всего лишь 10 А.

Приборы класса True RMS (с истинными среднеквадратическими показаниями)

Для измерения тока с искаженными кривыми необходимо при помощи анализатора кривой сигнала проверить форму синусоиды, после чего использовать измеритель с усреднением показаний только в том случае, если кривая окажется действительно идеальной синусоидой. Однако гораздо удобнее постоянно использовать измеритель с истинно среднеквадратическими показаниями (True RMS) и всегда быть уверенным в достоверности измерений. Современные мультиметры и токовые клещи подобного класса используют усовершенствованные технологии измерения, позволяющие определить реальные эффективные значения переменного тока вне зависимости от того, является ли токовая кривая идеальной синусоидой или искажена. Для этого применяются специальные преобразователи, обуславливающие основную разницу в стоимости с бюджетными аналогами. Единственное ограничение - кривая должна находиться в пределах допустимого диапазона измерений используемого прибора.

Все то, что касается особенностей измерения токов нелинейной нагрузки, также верно и для измерения напряжений. Кривые напряжения также зачастую не являются идеальными синусоидами, в результате чего измерители с усреднением показаний дают неверные результаты.

Исходя из описанных выше примеров, в современных высокотехнологичных электротехнических системах для измерения токов и напряжений рекомендуется применять приборы класса True RMS.

Вступление

Измерение trueRMS переменного напряжения - задача не совсем простая, не такая, какой она кажется с первого взгляда. Прежде всего потому, что чаще всего приходится измерять не чисто синусоидальное напряжение, а нечто более сложное, усложнённое наличием гармоник шумов.

Поэтому соблазнительно простое решение с детектором среднего значения с пересчётом в ср.кв. значения не работает там, где форма сигнала сильно отличается от синусоидальной или просто неизвестна.

Профессиональные вольтметры ср. кв. значения - это достаточно сложные устройства как по схемотехнике, так и по алгоритмам . В большинстве измерителей, которые носят вспомогательный характер и служат для контроля функционирования, такие сложности и точности не требуются.

Также требуется, чтобы измеритель мог быть собран на самом простом 8-битном микроконтроллере.

Общий принцип измерения

Пусть имеется некое переменное напряжение вида, изображённого на рис. 1.

Квазисинусоидальное напряжение имеет некий квазипериод T.

Преимущество измерения среднеквадратичного значения напряжения в том, что в общем случае время измерения не играет большой роли, оно влияет только на частотную полосу измерения. Большее время даёт большее усреднение, меньшее даёт возможность увидеть кратковременные изменения.

Базовое определение ср. кв. значения выглядит вот таким образом:


где u(t) - мгновенное значение напряжения
T - период измерения

Таким образом, время измерения может быть, вообще говоря, любым.

Для реального измерения реальной аппаратурой для вычисления подинтегрального выражения необходимо проквантовать сигнал с некоторой частотой, заведомо превосходящей не менее, чем в 10 раз частоту квазисинусоиды. При измерении сигналов с частотами в пределах 20 кГц это не представляет проблемы даже для 8-битных микроконтроллеров.

Другое дело, что все стандартные контроллеры имеют однополярное питание. Поэтому измерить мгновенное переменное напряжение в момент отрицательной полуволны не представляется возможным.

В работе предложено довольно остроумное решение, как внести постоянную составляющую в сигнал. Вместе с тем в том решении определение момента, когда стоит начать или закончить процесс вычисления ср. кв. значения представляется довольно громоздким.

В данной работе предлагается метод преодоления этого недостатка, а также вычисление интеграла с большей точностью, что позволяет снизить число точек выборки до минимума.

Особенности аналоговой части измерителя

На рис. 2 показано ядро схемы предварительной аналоговой обработки сигнала.

Сигнал поступает через конденсатор C1 на усилитель-формирователь, собранный на операционном усилителе DA1. Сигнал переменного напряжения замешивается на неинвертирующем входе усилителя с половиной опорного напряжения, которое используется в АЦП. Напряжение выбрано 2.048 В, поскольку в компактных устройствах часто используется напряжение питания +3.6 В и менее. В иных случаях удобно использовать 4.048 В, как в .

С выхода усилителя-формирователя через интегрирующую цепочку R3-C2 сигнал поступает на вход АЦП, который служит для измерения постоянной составляющей сигнала (U0). C усилителя-формирователя сигнал U’ - это измеряемый сигнал, сдвинутый на половину опорного напряжения. Таким образом, чтобы получить переменную составляющую, достаточно вычислить разность U’-U0.
Сигнал U0 используется также в качестве опорного для компаратора DA2. При переходе U’ через значение U0 компаратор вырабатывает перепад, который используется для формирования процедуры прерывания для сбора измерительных отсчётов.

Важно, что во многие современные микроконтроллеры встроены как операционные усилители, так и компараторы, не упоминая АЦП.

Базовый алгоритм

На рис. 3 дан базовый алгоритм для случая измерения величины переменного напряжения с основной частотой 50 Гц.


Запуск измерения может осуществляться по любому внешнему событию вплоть до кнопки, нажимаемой вручную.

После запуска в первую очередь измеряется постоянная составляющая во входном сигнале АЦП, а затем контроллер переходит в ожидание положительного перепада на выходе компаратора. Как только прерывание по перепаду наступает, контроллер делает выборку из 20 точек с временным шагом, соответствующим 1/20 квазипериода.

В алгоритме написано X мс, поскольку низкобюджетный контроллер имеет собственное время задержки. Чтобы измерение происходило в правильные моменты времени, необхоимо учитывать эту задержку. Поэтому реальная задержка будет меньше 1 мс.

В данном примере задержка соответствует измерениям квазисинусоид в диапазоне 50 Гц, но может быть любой в зависимости от квазипериода измеряемого сигнала в пределах быстродействия конкретного контроллера.

При измерениях ср.кв. значения напряжения произвольного квазипериодического сигнала, если априори неизвестно, что это за сигнал, целесообразно измерить его период, используя встроенный в контроллер таймер и тот же выход компаратора. И уже на основании этого замера устанавливать задержку при осуществлении выборки.

Вычисление среднеквадратичного значения

После того, как АЦП создал выборку, имеем массив значений U"[i], всего 21 значение, включая значение U0. Теперь, если применить формулу Симпсона (точнее, Котеса) для численного интергрирования, как наиболее точную для данного применения, то получим следующее выражение:

где h - шаг измерения, а нулевой компонент формулы отсутствует, поскольку он равег 0 по определению.

В результате вычисления мы получим значение интеграла в чистом виде в формате отсчётов АЦП. Для перевода в реальные значения полученное значение нужно промасштабировать с учётом величины опорного напряжения и поделить на интервал времени интегрирования.

где Uоп - опорное напряжение АЦП.

Если всё пересчитать в мВ, K приблизительно равняется просто 2. Масштабный коэффициент относится к разностям в квадратных скобках. После пересчёта и вычисления S делим на интервал измерения. С учётом множителя h фактически получаем деление на целое число вместо умножения на h с последующим делением на интервал времени измерения.

И в финале извлекаем квадратный корень.

И вот тут самое интересное и сложное наступает. Можно, разумеется, использовать плавающую точку для вычислений, поскольку язык C это допускает даже для 8-битных контроллеров, и производить вычисления непосредственно по приведённым формулам. Однако скорость расчёта упадёт существенно. Также можно выйти за пределы весьма небольшого ОЗУ микроконтроллера.

Чтобы такого не было, нужно, как верно указано в , использовать фиксированную точку и оперировать максимум 16-битными словами.

Автору эту проблему удалось решить и измерять напряжение с погрешностью Uоп/1024, т.е. для приведённого примера с точностью 2 мВ при общем диапазоне измерения ±500 мВ при напряжении питания +3.3 В, что достаточно для многих задач мониторинга процессов.

Программная хитрость состоит в том, чтобы все процессы деления, по возможности, делать до процессов умножения или возведения в степень, чтобы промежуточный результат операций не превышал 65535 (или 32768 для действий со знаком).

Конкретное программное решение выходит за рамки данной статьи.

Заключение

В данной статье рассмотрены особенности измерения среднеквадратичных значений напряжения с помощью 8-битных микроконтроллеров, показан вариант схемной реализации и основной алгоритм получения отсчётов квантования реального квазисинусоидального сигнала.

Среднеквадратичное значение (СКЗ). Действующее или эффективное значение
Истинное среднеквадратичное значение (ИСКЗ)

Root-mean-square (RMS) − среднеквадратичное значение – англ.
True Root-Mean-Square (TRMS) − истинное среднеквадратичное значение – англ.

Для любой периодической функции (например, тока или напряжения) вида f = f(t) среднеквадратичное значение функции определяется как:

то действующее значение периодической несинусоидальной функции выражается формулой

Поскольку Fn − амплитуда n-ой гармоники, то Fn / √2 − действующее значение гармоники. Таким образом, полученное выражение показывает, что действующее значение периодической несинусоидальной функции равно корню квадратному из суммы квадратов действующих значений гармоник и квадрата постоянной слагающей.

Например если, несинусоидальный ток выражается формулой:

то среднеквадратичное значение тока равно:

Все приведённые выше соотношения используются при вычислении в тестерах измеряющих ИСКЗ, в цепях измерения тока ИБП, в анализаторах сети и в др. оборудовании.

Истинное среднеквадратичное значение (ИСКЗ), True Root-Mean-Square (TRMS)

Большинство простых тестеров не могут точно измерять среднеквадратичное значение несинусоидального сигнала (то есть сигнала с большими гармоническими искажениями, например, прямоугольной формы). Они правильно определяют СКЗ напряжения только для синусоидальных сигналов. Если таким прибором измерить СКЗ напряжения прямоугольной формы, то показание будет ошибочным. Причина ошибки – обычные тестеры при вычислении учитывают основную гармонику (для обычной сети – 50 Гц), но не берут в расчет высшие гармоники сигнала.

Для решения данной проблемы существуют особые приборы, точно измеряющие СКЗ с учётом высших гармоник (обычно до 30-50 гармоник). Они маркируются символом TRMS или ИСКЗ (true root-mean-square) – истинное среднеквадратичное значение, True RMS, истинное СКЗ.

Так, например, обычный тестер может измерить с ошибкой напряжение на выходе ИБП с аппроксимированной синусоидой, в то время как тестер «APPA 106 TRUE RMS MULTIMETER» измеряет напряжение (СКЗ) правильно.

Замечания

Для синусоидального сигнала, фазное напряжение в сети (нейтраль – фаза, phase voltage) равно:

UСКЗ ф = Uмакс ф / (√2)

Для синусоидального сигнала, линейное напряжение в сети (фаза – фаза, interlinear voltage) равно:

UСКЗ л = Uмакс л / (√2)

Соотношение между фазным и линейным напряжением:

UСКЗ л = UСКЗ ф * √3

Обозначения:

ф – линейное (напряжение)

л – фазное (напряжение)

СКЗ – среднеквадратичное значение

макс – максимальное или амплитудное значение (напряжения)

Примеры:

Фазному напряжению 220 В соответствует линейное напряжение 380 В

Фазному напряжению 230 В соответствует линейное напряжение 400 В

Фазному напряжению 240 В соответствует линейное напряжение 415 В

Фазное напряжение:

Напряжение в сети 220 В (СКЗ), - амплитудное значение напряжения около ±310 В

Напряжение в сети 230 В (СКЗ), - амплитудное значение напряжения около ±325 В

Напряжение в сети 240 В (СКЗ), - амплитудное значение напряжения около ±340 В

Линейное напряжение:

Напряжение в сети 380 В (СКЗ), - амплитудное значение напряжения около ±537 В

Напряжение в сети 400 В (СКЗ), - амплитудное значение напряжения около ±565 В

Напряжение в сети 415 В (СКЗ), - амплитудное значение напряжения около ±587 В

Ниже приведён обычный пример фазных напряжений в 3-фазной сети:



Г.И. Атабеков Основы Теории Цепей с.176, 434 с.

Точные измерения - трудная задача, стоящая перед технологами и специалистами по обслуживанию современных производств и оборудования различных организаций. В нашу повседневную жизнь все больше и больше входят персональные компьютеры, приводы с регулируемой скоростью и другое оборудование, имеющее несинусоидальные характеристики потребляемого тока и рабочего напряжения (в виде кратковременных импульсов, с искажениями и т.п.). Такое оборудование может вызвать неадекватные показания обычных измерителей с усреднением показаний (вычисляющих среднеквадратическое значение).

Почему следует выбирать приборы класса True-RMS?

Говоря о значениях переменного тока, мы обычно имеем в виду среднюю эффективную выделяемую теплоту или среднеквадратическое (RMS) значение тока. Данное значение эквивалентно значению постоянного тока, действие которого вызвало бы такой же тепловой эффект, что и действие измеряемого переменного тока, и вычисляется по следующей формуле:

.

Самый распространенный способ измерения такого среднеквадратического значения тока при помощи измерительного прибора заключается в выпрямлении переменного тока, определении среднего значения выпрямленного сигнала и умножении результата на коэффициент 1,1 (соотношение между средним и среднеквадратическим значениями идеальной синусоиды).

Однако, при отклонении синусоидальной кривой от идеальной формы данный коэффициент перестает действовать. По этой причине измерители с усреднением показаний зачастую дают неверные результаты при измерении токов в современных силовых сетях.

Линейные и нелинейные нагрузки

Рис. 1. Кривые напряжения синусоидальной и искажённой формы.

Линейные нагрузки, в состав которых входят только резисторы, катушки и конденсаторы, характеризуются синусоидальной кривой тока, поэтому при измерении их параметров проблем не возникает. Однако в случае нелинейных нагрузок, таких как приводы с регулируемой частотой и источники питания для офисного оборудования, при наличии помех от мощных нагрузок имеют место искаженные кривые.

Рис. 2. Кривые тока и напряжения блока питания персонального компьютера.

Измерение среднеквадратического значения токов по таким искаженным кривым с использованием обычных измерителей может дать в зависимости от характера нагрузки значительное занижение истинных результатов:


Класс прибора
Тип нагрузки / формы кривой
ШИМ (меандр) однофазный диодный
выпрямитель
трёхфазный диодный
выпрямитель
RMS корректно завышение на 10% занижение на 40% занижение 5%...30%
True RMS корректно корректно корректно корректно

Поэтому у пользователей обычных приборов возникнет вопрос, почему, например, 14-амперный предохранитель регулярно перегорает, хотя по показаниям амперметра ток составляет всего лишь 10 А.

Приборы класса True RMS (с истинными среднеквадратическими показаниями)

Для измерения тока с искаженными кривыми необходимо при помощи анализатора кривой сигнала проверить форму синусоиды, после чего использовать измеритель с усреднением показаний только в том случае, если кривая окажется действительно идеальной синусоидой. Однако гораздо удобнее постоянно использовать измеритель с истинно среднеквадратическими показаниями (True RMS) и всегда быть уверенным в достоверности измерений. Современные мультиметры и токовые клещи подобного класса используют усовершенствованные технологии измерения, позволяющие определить реальные эффективные значения переменного тока вне зависимости от того, является ли токовая кривая идеальной синусоидой или искажена. Для этого применяются специальные преобразователи, обуславливающие основную разницу в стоимости с бюджетными аналогами. Единственное ограничение - кривая должна находиться в пределах допустимого диапазона измерений используемого прибора.

Все то, что касается особенностей измерения токов нелинейной нагрузки, также верно и для измерения напряжений. Кривые напряжения также зачастую не являются идеальными синусоидами, в результате чего измерители с усреднением показаний дают неверные результаты.

Понравилась статья? Поделитесь ей