Контакты

Управление компьютера внешними устройствами через usb. Управление приборами через USB-порт компьютера на ATmega8. Программа менеджер USBDeview для управления USB устройствами

Устройство компьютерного управления
различными приборами, схема которого показана на рис. 1, функцио­нально подобно
описанному в , но подключается к USB-порту компьюте­ра, который (в отличие
от СОМ-порта) сегодня есть в каждом из них. Единственная мик­росхема устройства
- распространенный мик­роконтроллер ATmega8. Он необходим для орга­низации
связи по шине USB. Хотя в нем и отсут­ствует специализирован­ный аппаратный
модуль, эта функция выполняется программно. Резистор R1, подклю­ченный между
положи­тельным выводом источ­ника питания и линией D-шины USB, переводит ее в низкоскоростной
режим LS со скоростью обмена 1,5 Мбит/с, что и позво­ляет расшифровывать по­сылки
компьютера про­граммным способом. Ре­зисторы R4 и R5 устра­няют переходные
процес­сы, возникающие при об­мене информацией, что увеличивает стабильность работы.
Конденсатор С1 блокирует импульсные по­мехи в цепи питания, что также улучшает
стабиль­ность работы устройства. Диоды VD1 и VD2 служат для понижения напряже­ния
питания микроконт­роллера приблизительно до 3,6 В - это требуется для
согласования уровней с шиной USB. Сигналы управления приборами формируются на
выходах РВ0-РВ5 и РС0, РС1 микроконтроллера. Высокий логический уровень -
напряжение око­ло 3,4 В. Напряжение низкого уровня близко к нулю. К выходам
можно под­ключать приборы, потребляющие ток не более 10 мА (от каждого выхода).
Если требуются большие значения тока или напряжения, то следует использовать узлы
согласования, показанные в на рис. 5 и 6.

Устройство собрано на макетной плате,
печатная не разрабатывалась. Применены резисторы МЛТ, конденса­торы С2 и С3 -
керамические высоко­частотные, С1 - К50-35 или аналогич­ный импортный. Диоды
кремниевые с падением напряжения на переходе около 0,7 В. Программа для микро­контроллера
разработана в среде Bascom-AVR версии 1.12.0.0. Для работы с шиной USB
использована библиотека swusb.LBX, которая выполняет программное декодирование сигналов
USB в режиме реаль­ного времени. Полученный в результате компиляции код программы
из файла с расши­рением HEX следует загрузить во FLASH-память микроконт­роллера.
Для этого был ис­пользован программатор совместно со встроенной в Bascom-AVR
утилитой. Состоя­ние разрядов конфигурации микроконтроллера должно со­ответствовать
показанному на рис. 2. При первом подключении устройства к компьютеру опе­рационная
система обнаружит новое USB HID совместимое устройство с именем
“uniUSB” и установит необходимые драйверы. Через несколько се­кунд
устройство настроено и готово к использованию.

Для работы с ним была создана программа
UniUSB. Она пред­ставлена в двух вариантах: для 32-разрядных (х86) и 64-раз­рядных
(х64) операционных систем семейства Windows. Работа 32-разрядной версии проверена
в операционных системах Windows 98, Windows ХР, Windows 7, а 64-разрядной -
только в Windows ХР х64. Программа UniUSB написана на языке PureBasic (версия
4.31) с исполь­зованием библиотеки пользовательс­ких функций HID_lib,
поддерживающей работу с USB HID устройствами. Внеш­ний вид окна программы
показан на рис. 3. В одной папке с ее исполняемым файлом должен находиться
файл, называющийся UniUSB_Код.txt или UniCOM_Код.txt. Последний вариант необходим
для совместимости с про­граммой UniCOM, предложенной в . В этом файле
хранится сценарий управ­ления внешними приборами. При запуске программы данные
из файла загружаются в таблицу, расположенную в главном окне, а при завершении
рабо­ты сохраняются в файле. Щелчок левой кнопкой мыши по ячейкам таблицы поз­воляет
изменять их состояние: 1 - высокий логический уровень, 0 или пусто - низкий
логический уровень. Для добавления или удаления столбца таблицы нужно по ней
щелкнуть правой кнопкой мыши и в появившемся меню выбрать требуемое действие.

При подключении устройства к USB-порту
программа обнаружит его и активирует кнопку, расположенную в верхней части
окна на панели инстру­ментов. Нажатием на эту кнопку запус­кают процесс
перебора столбцов таб­лицы и установки указанных в них со­стояний выходов. Для
большей нагляд­ности слева от таблицы подсвечивают­ся номера выходов, на
которых в дан­ный момент установлен высокий логи­ческий уровень. Скорость
перебора (время в миллисекундах между перехо­дами от столбца к столбцу) задают
в поле “Скорость, мс”.

Учтите, операционная система Windows
- многозадачная! Это означает, что процессорное время делится между множеством
иногда скрытых от пользователя процессов, которые вы­полняются по очереди с
учетом уста­новленных в системе приоритетов. По­этому не стоит ожидать большой
точно­сти выдерживания интервалов времени менее 100 мс. Для кратковременной
остановки пе­ребора столбцов используйте кнопку Повторное нажатие на нее
продолжит перебор с места остановки. Кнопка полностью прекращает перебор столб­цов
таблицы. Если в процессе обмена информацией между компьютером и устройством
произойдет сбой либо уст­ройство будет отключено от разъема USB компьютера,
программа сообщит об ошибке, выведя в строке состояния соответствующее
сообщение.

ЛИТЕРАТУРА

1. Носов Т. Управление приборами
через СОМ-порт компьютера. - Радио, 2007, № 11,0.61,62.

2. Рыжков А. US-программатор
микро­контроллеров AVR и AT89S, совместимый с AVR910. - Радио, 2008, № 7, с.
28, 29.

От редакции . Программы для микро­контроллера и компьютера находятся
на нашем FTP-сервере по адресу ftp:// ftp.radio.ru/pub/2011/02/uniUSB.zip

Устройство компьютерного управления различными приборами, схема которого показана на рис. 1, подключается к USB-порту компьютера, который сегодня есть в каждом из них. Единственная микросхема устройства - распространенный микроконтроллер ATmega8 . Он необходим для организации связи по шине USB . Хотя в нем и отсутствует специализированный аппаратный модуль, эта функция выполняется программно.

Рисунок 1

Резистор R1, подключенный между положительным выводом источника питания и линией D-шины USB, переводит ее в низкоскоростной режим LS со скоростью обмена 1,5 Мбит/с, что и позволяет расшифровывать посылки компьютера программным способом. Резисторы R4 и R5 устраняют переходные процессы, возникающие при обмене информацией, что увеличивает стабильность работы. Конденсатор С1 блокирует импульсные помехи в цепи питания, что также улучшает стабильность работы устройства Диоды VD1 и VD2 служат для понижения напряжения питания микроконтроллера приблизительно до 3,6 В - это требуется для согласования уровней с шиной USB.

Сигналы управления приборами формируются на выходах РВ0-РВ5 и РС0, РС1 микроконтроллера. Высокий логический уровень - напряжение около 3,4 В. Напряжение низкого уровня близко к нулю. К выходам можно подключать приборы, потребляющие ток не более 10 мА (от каждого выхода). Если требуются большие значения тока или напряжения, то следует использовать узлы согласования.

Устройство собрано на макетной плате, печатная не разрабатывалась Применены резисторы МЛТ, конденсаторы С2 и СЗ - керамические высокочастотные, С1 - К50-35 или аналогичный импортный. Диоды кремниевые с падением напряжения на переходе около 0,7 В.

Программа для микроконтроллера разработана в среде Bascom-AVR версии 1.12.0.0. Для работы с шиной USB использована библиотека swusb.LBX , которая выполняет программное декодирование сигналов USB в режиме реального времени. Полученный в результате компиляции код программы из файла с расширением HEX следует загрузить во FLASH-память микроконтроллера. Состояние разрядов конфигурации микроконтроллера должно соответствовать показанному на рис. 2.

Рисунок 2

При первом подключении устройства к компьютеру операционная система обнаружит новое USB НID совместимое устройство с именем "uniUSB " и установит необходимые драйверы. Через несколько секунд устройство настроено и готово к использованию. Для работы с ним была создана программа UniUSB. Она представлена в двух вариантах: для 32-разрядных (х86) и 64-разрядных (х64) операционных систем семейства Windows. Работа 32-разрядной версии проверена в операционных системах Windows 98, Windows ХР, Windows 7, а 64-разрядной - только в Windows ХР х64.

Программа UniUSB написана на языке PureBasic (версия 4.31) с использованием библиотеки пользовательских функций HID_Lib , поддерживающей работу с USB HID устройствами. Внешний вид окна программы показан на рис. 3.

Рисунок 3

В одной папке с ее исполняемым файлом должен находиться файл, называющийся UniUSB_KOfl.txt . В этом файле хранится сценарий управления внешними приборами. При запуске программы данные из файла загружаются в таблицу, расположенную в главном окне, а при завершении работы сохраняются в файле. Щелчок левой кнопкой мыши по ячейкам таблицы позволяет изменять их состояние: 1 - высокий логический уровень, 0 или пусто - низкий логический уровень.

Для добавления или удаления столбца таблицы нужно по ней щелкнуть правой кнопкой мыши и в появившемся меню выбрать требуемое действие. При подключении устройства к USB-порту программа обнаружит его и активирует кнопку "Пуск" , расположенную в верхней части окна на панели инструментов. Нажатием на эту кнопку запускают процесс перебора столбцов таблицы и установки указанных в них состояний выходов. Для большей наглядности слева от таблицы подсвечиваются номера выходов, на которых в данный момент установлен высокий логический уровень. Скорость перебора (время в миллисекундах между переходами от столбца к столбцу) задают в поле "Скорость, мс".

Учтите, операционная система Windows - многозадачная! Это означает, что процессорное время делится между множеством иногда скрытых от пользователя процессов, которые выполняются по очереди с учетом установленных в системе приоритетов. Поэтому не стоит ожидать большой точности выдерживания интервалов времени менее 100 мс.

Для кратковременной остановки перебора столбцов используйте кнопку "Пауза". Повторное нажатие на нее продолжит перебор с места остановки. Кнопка "Стоп" полностью прекращает перебор столбцов таблицы. Если в процессе обмена информацией между компьютером и устройством произойдет сбой либо устройство будет отключено от разъема USB компьютера, программа сообщит об ошибке, выведя в строке состояния соответствующее сообщение.



С точки зрения программирования модуль предлагает весьма интересное решение. Во-первых, что следует указать, при подключении к компьютеру он определяется ОС Windows (и Linux тоже) как виртуальный COM порт, т.е. в диспетчере устройств у Вас появится дополнительный COM порт. Соответственно, управление модулем осуществяляется через обычный последовательный порт. Это означает, что для работы с модулем Вам вообще нет необходимость даже вспоминать о USB - Вы работаете только с COM портом. Значит для работы с модулем можно использовать любой язык / среду / компонент прграммирования, главное только чтобы он поддерживал работу с последовательными портами. Для непосредственного управления модулем предусмотрен набор текстовых . Т.е. выбираем нужную команду, записываем ее в COM порт и модуль выполняет то что заказано. Весьма просто и удобно. Благодаря тому что команды текстовые, модулем можно управлять из любой программы-терминала для COM портов, например HyperTerminal, входящей в состав Windows.

Помимо возможности управления линиями ввода/вывода модуль также имеет встроенный 10-ти разрядный АЦП с частотой дискретизации до 400 Гц + еще парочку интересных настроек и свойств, о которых мы поговорим позже.


Итак, приступим к практическому использованию модуля. Первым делом необходимо установить драйвера для него. Весть процесс установки модуля подробнейшим образом описан в соответствующем оффициальном документе . Здесь я дублировать информацию не буду, обращю только внимание на то, что фактически драйвер, требуемый для модуля уже находится в составе Windows. Это так называемый стандартный драйвер виртуального COM порта. Итого из файлов установки нам нужен только ke-usb24.inf в котором указаны параметры установки.

После установки устройства, давайте создадим на основе модуля самую простенькую схемку - будем управлять светодиодами, подключенными к модулю, а именно зажигать или тушить их по нашей команде. Схема подобного устройства показана на рисунке ниже. Схема расчитана на маломощные светодиоды. Я использую L-934 фирмы Kingbright. Если используемые Вами светодиоды помощнее и Вы чувствуете что корпус модуля или светодиода изрядно нагревается, лучше между светодиодом и выводом модуля включить токоограничивающий резистор номиналом в 200-600 Ом.

Вот эта же схема собранная мною на макетной плате. Я позволил тут себе не набирать все светодиоды.

Итак, схему собрали. Пора взяться непосредственно за софт. Тут есть два варианта. Первый, это использовать готовую терминальную программу и подавать в ней команды модулю в ручную. К таким программам относятся, например, HyperTerminal или . Последняя хороша тем, что для нее доступны исходные коды и при желании ее можно модернизировать под свои нужды. Второй вариант, болле интересный, разработка собственнго софта. Давайте так и сделам. Напишем небольшую Windows программку на С++ в среде Microsoft Visual C++ 6.0 для управления линиями модуля, настроенными на выход.

Внешне она выглядит вот так. Т.е. вводим номер порта, нажимаем кнопку "Open". Далее галочками выбираем каким светодиодам светиться, а каким нет. Все весьма просто.

Посмотрим на код этой программы. Начнем с функции открытия порта. Тут все уже рассматривалось не раз. Единственное, на что я хотел бы обратить Ваше внимание, так это на скорость порта. Для модуля Ke-USB24A она не имеет НИКАКОГО значения. Можно было подключаться и на 1200 и 115200. Хоть мы и работаем с COM портом, он всеже виртуальный, и реально данные передаются по USB каналу. А ему знания о скорости виртуального COM порта совершенно не нужны. Здесь они указываются только для поддержания совместимости.

Рассмотрим код формирования команды модулю и ее отправки в порт. Для установки линии модуля Ke-USB24A служит текстовая команда $KE,WR, . Собственно в этой функции мы такую команду и формируем. Обратите внимание на \r\n в конце команды. Таков синтаксис команд модуля - все должно заканчиваться символами возврата каретки и перевода на новую строку.

void CLineControlDlg::WriteDataToLine(int line, bool value) { if (line 24 || m_hFile == NULL) { MessageBox("Can`t Write\nCommand", "Error", MB_ICONERROR); return ; } DWORD lpdwBytesWritten; char buf; int len = sprintf(buf, "$KE,WR,%d,%d\r\n", line, value); WriteFile(m_hFile, buf, len, &lpdwBytesWritten, NULL); }

Итак, с кодом наверное все понятно. Запускаем программу, не забыв при этом подключить модуль. Открываем порт (номер порта можно посмотреть в диспетчере устройств). Щелкаем галочками - управляем светодиодами.

Вот таким вот образом можно за минимальный срок собрать схему управления светодиодами через USB. Ke-USB24A может использоваться и для управления нагрузками помощнее, но для этого к нему будет необходимо добавить дополнительную внешнюю схему в виде реле или мощного транзистора. Об этом мы поговорим позже.


Управление устройствами через USB-порт компьютера.

П. ВЫСОЧАНСКИЙ, г. Рыбница, Приднестровье, Молдавия
Устройство компьютерного управления различными приборами, схема которого показана на рис. 1, функционально подобно описанному в , но подключается к USB-порту компьютера, который (в отличие от СОМ-порта) сегодня есть в каждом из них. Единственная микросхема устройства - распространенный микроконтроллер ATmega8. Он необходим для организации связи по шине USB. Хотя в нем и отсутствует специализированный аппаратный модуль, эта функция выполняется программно.

Резистор R1, подключенный между положительным выводом источника питания и линией D-шины USB, переводит ее в низкоскоростной режим LS со скоростью обмена 1,5 Мбит/с, что и позволяет расшифровывать посыпки компьютера программным способом. Резисторы R4 и В5 устраняют переходные процессы, возникающие при обмене информацией, что увеличивает стабильность работы. Конденсатор С1 блокирует импульсные помехи в цепи питания, что также улучшает стабильность работы устройства. Диоды VD1 и VD2 служат для понижения напряжения питания микроконтроллера приблизительно до 3,6 В - это требуетсядля согласования уровнен с шиной USB.
Сигналы управления приборами формируются на выходах РВ0-РВ5 и РСО, РС1 микроконтроллера. Высокий логический уровень - напряжение около 3,4 В.
Напряжение низкого уровня близко к нулю. К выходам можно подключать приборы, потребляющие ток не более 10 мА (от каждого выхода). Если требуются большие значения тока или напряжения, то следует использовать узлы согласования, показанные в на рис. 5 и 6. Устройство собрано на макетной плате, печатная не разрабатывалась Применены резисторы МЛТ, конденсаторы С2 и СЗ - керамические высокочастотные, С1 - К50-35 или аналогичный импортный. Диоды кремниевые с падением напряжения на переходе около 0,7 В. Программа для микроконтроллера разработана в среде Bascom-AVR версии 1.12.0.0. Для работы с шиной USB использована библиотека swusb.LBX, которая выполняет программное декодирование сигналов USB в режиме реального времени. Полученный в результате компиляции код программы из файла с расширением HEX следует загрузить во FLASH-память микроконтроллера. Для этого был использован программатор совместно со встроенной в Bascom-AVR утилитой. Состояние разрядов конфигурации микроконтроллера должно соответствовать показанному на рис.2


При первом подключении устройства к компьютеру операционная система обнаружит новое USB HID совместимое устройство с именем "uniUSB" и установит необходимые драйверы. Через несколько секунд устройство настроено и готово к использованию. Для работы с ним была создана программа UniUSB. Она представлена в двух вариантах: для 32-разрядных (х86) и 64-разрядных (х64) операционных систем семейства Windows. Работа 32-разрядной версии проверена в операционных: Windows 98, Windows XP, Windows 7, а 64-разрядной - только в Windows XP х64. Программа UniUSB написана иа языке PureBasic (версия 4.31) с использованием библиотеки пользовательских функций HID Lib, поддерживающей работу с USB HID устройствами. Внешний вид окна программы показан на Рис.3


В одной папке с ее исполняемым файлом должен находиться файл, называющийся UniUSB_код.txt или UniCOM_код.txt. Последний вариант необходим для совместимости с программой UniCOM, предложенной в . В этом файле хранится сценарий управления внешними приборами. При запуске программы данные из файла загружаются в таблицу, расположенную в главном окне, а при завершении работы сохраняются в файле. Щелчок левой кнопкой мыши по ячейкам таблицы позволяет изменять их состояние: 1 - высокий логический уровень, 0 или пусто - низкий логический уровень. Для добавления или удаления столбца таблицы нужно по ней щелкнуть правой кнопкой мыши и в появившемся меню выбрать требуемое действие. При подключении устройства к USB-порту программа обнаружит его и активирует кнопку, расположенную в верхней части окна на панели инструментов. Нажатием на эту кнопку запускают процесс перебора столбцов таблицы и установки указанных в них состояний выходов. Для большей наглядности слева от таблицы подсвечиваются номера выходов, на которых в данный момент установлен высокий логический уровень. Скорость перебора (время в миллисекундах между переходами от столбца к столбцу) задают в поле "Скорость, мс". Учтите, операционная система Windows -- многозадачная! Это означает, что процессорное время делится между множеством иногда скрытых от пользователя процессов, которые выполняются по очереди с учетом установленных в системе приоритетов. По этому не стоит ожидать большой точности выдерживания интервалов времени менее 100 мс.
Для кратковременной остановки перебора столбцов используйте кнопку, Повторное нажатие на нее продолжит перебор с места остановки. Кнопка полностью прекращает перебор столбцов таблицы. Если в процессе обмена информацией между компьютером и устройством произойдет сбой либо устройство будет отключено от разъема USB компьютера, программа сообщит об ошибке, выведя в строке состояния соответствующее сообщение.

ЛИТЕРАТУРА

1. Носов Т. Управление приборами через СОМ-порт компьютера - Радио, 2007, № 11,с.61,62.
2. Рыжков A. US-программатор микроконтроллеров AVR и AT89S, совместимый с AVR910. - Радио, 2008, № 7, с. 28, 29.

По материалам журнала "Радио 2`2011"
Скачать прошивку микроконтроллера и программу для PC можно

13-01-2014

ATiny2313

Захаров Денис, Украина

Как известно, существует достаточное количество интерфейсов, с помощью которых микроконтроллер (МК) может общаться с внешними устройствами. Если необходимо связать МК с персональным компьютером или ноутбуком, то с уверенностью можно сказать, что лучше всего использовать интерфейс COM-порта RS-232.

Причина такого выбора очевидна - практически все контроллеры имеют аппаратные модули UART, с помощью которых можно передавать информацию при минимальном расходе ресурсов МК. Кроме того, существует множество хорошо зарекомендовавших себя программ, предназначенных для работы с COM-портом. Поскольку сигналы МК имеют уровни TTL, для согласования с интерфейсом RS-232 необходим преобразователь уровней. Часто его выполняют на основе доступной и популярной микросхемы MAX232 .

Рисунок 1.

Представленное устройство (Рисунок 1) предназначено для управления приборами с помощью любого ПК, имеющего порт USB. Современные компьютеры и ноутбуки имеют по несколько таких портов. С помощью этого комплекса можно производить управление светом, телевизором и другими приборами. Исполняющие устройства не обязательно должны находиться в непосредственной близости от ПК.

Прибор состоит из вполне доступных и распространенных элементов. Обе микросхемы - микроконтроллеры ATtiny2313 семейства . Первый контроллер подключен к USB-порту компьютера и выполняет функцию конвертора форматов USB-COM. Второй подключается к первому и все время сканирует команды, которые посылаются с ПК через терминальную программу Terminal v1.9b.

Подключенный к выводу 2 USB резистор R4 переводит устройство в низкоскоростной режим LS, позволяющий при обмене данными со скоростью 1.5 Мбит/с с помощью программы выпонять расшифровку посылок от ПК.

С помощью резисторов R2 и R3 происходит устранение переходных процессов. Конденсатор С5 блокирует импульсные помехи в цепи питания. Стабилитроны D1 и D2 необходимы для согласования логических уровней МК и USB входа ПК. Для безошибочной передачи данных между контроллерами частоты кварцевых резонаторов должны быть равны 12 и 4 МГц.
К выводам /RESET следует подключить подтягивающие резисторы, чтобы в дальнейшем избежать произвольного сброса МК из-за влияния помех и статических напряжений. В данной схеме все команды отображаются на светодиодах, подключенных к порту В. Чтобы управлять какими-либо устройствами, необходимо подключать выходы контроллера к реле (Рисунок 2).

Собрать устройство можно на макетной плате, хотя лучше, все же, на полноценной печатной плате. Элементы можно разместить, например, так, как показано на Рисунке 3.

Программа для микроконтроллера U1 разработана товарищем GetChiper в среде Bascom-AVR. Для работы с шиной USB использована библиотека swusb.LBX . С ее помощью выполняется программное декодирование USB протокола в режиме реального времени. Для работы устройства с ПК, нужно установить соответствующие драйверы, скопировав их на жесткий диск. При первом подключении устройство опознается и запросит драйвер. Далее нужно указать путь к папке с файлами, и все заработает.

Программа микроконтроллера U2 была написана мною в среде AVRStudio на языке ассемблера. Блок-схема алгоритма работы МК представлена на Рисунке 4. Аппаратный модуль UART следует настроить на прерывание по завершению приема данных. Сам МК не будет выполнять ни одной функции, пока не наступит прерывание. Для снижения энергопотребления можно воспользоваться режимом sleep, но в данной конструкции этого делать не понадобилось. Как только из терминала ПК последуют команды, МК мгновенно перейдет к их сканированию. На данный момент контроллер поддерживает следующую систему команд:

-on1, on2, on3, on4, on5, on6, on7, on8 - команды установки портов в «лог. 1»;
-off1, off2, off3, off4, off5, off6, off7, off8 - команды установки портов в «лог. 0»;
-ser - установить все порты в активное состояние «лог. 1»;
-clr - сбросить все порты в состояние «лог.0».

После окончания ввода каждой команды необходимо нажимать Enter. Таким образом МК сможет определить конец команды и приступить к ее сканированию. На каждую верную команду контроллер будет отвечать «ok». Если ввести неверные данные, то в терминальную строку вернется «error». Пример выполнения команды показан на Рисунке 5.

Версия прошивки 1.0. Выставлять фьюзы необходимо в соответствии с Рисунком 6. Разрабатывается следующая версия прошивки, где будет происходить самообучение МК и изменение систем команд в терминале.

Программное обеспечение МК, виртуальная модель Proteus и драйвер для ПК -
Протокол передачи данных между МК и ПК- скачать

  • ....вообще-то хотелось увидеть соопрежение м/у USB-портом одного компьютера с COM-портом второго...или LPT-порта третьего...
  • Спасибо! Опечатка исправлена:)
  • Зачем использовать 2 МК? Неужели у Attiny2313 мало flash? Или просто не хватает портов I/O? Тогда ладно, видно, что USB висит на INT0/INT1.
  • Сопротивление катушек маломощных реле в районе 100-200 Ом, не учитывая насыщенный транзистор (это же не пускатель, и не контактор). Так что 50-200 мА подходящий ключ не испугается. Материал очень интересен в плане привязки МК к USB без всяких интерфейсных микросхем и без присутствия в структуре МК аппаратного USB. Но учитывая цели и задачи первоисточника http://www.recursion.jp/avrcdc/cdc-232.html, из двух МК один выполняет всё же функции преобразователя USB-COM. И весьма дешёвого преобразователя, что безусловно радует.
  • Вот интересный гражданин попался с «дворянскими замашками», судя по нику. О каких экстремумах идёт речь? Вроде в материале нет даже упоминания о типе реле или транзисторов. И если реле запитывается от 5В USB то, безусловно, хотелось бы минимизировать потребление со стороны хоста на ПК. Этого можно добиться оптронами и дополнительным питанием реле со стороны нагрузки, что усложняет схему. Или ещё пару вариантов. Разве акцент в статье сделан на оптимизации? Автор добился своего и правильно делает, что не выкладывает конкретную плату. Для того, кто будет повторять, данного узла достаточно.
  • Да, статейка еще та... но стоит ли так опситраться? Я тоже хотел кое что прокомментировать сразу как ее прочел, и диод в том числе. Но анонимно тут нельзя. Вот зачем автору AVR-CDC? Я не заметил что где-то в схеме используются сигналы DTR, DTS, RTS, CTS. V-USB не хватило? Про два "кирпича" уже написали выше, - хватило бы и одного. А про диод уже исправлено, слава Будде! Диод нужен для защиты транзистора от импульса напряжения самоиндукции обмотки реле, в момент размыкания тока. Вот, кстати, вспомнил одну реализацию. Статья была в журнале Радио, но и в интернетах нашлась, кому интересно можете глянуть.
Понравилась статья? Поделитесь ей