Контакты

Vor dme принцип действия. Радиотехнические системы ближней навигации. Дальномерный радиомаяк DME

Угломерный канал навигации VOR предназначен для определения азимута ЛА относительно радионавигационной точки, в которой устанавливается наземное оборудование системы. В состав угломерного канала входит наземное и бортовое оборудование. Наземное оборудование представляет собой радиомаяк, излучающий сигналы, прием и обработка которых на борту ЛА позволяет определить его азимут. Бортовое оборудование представляет собой приемоиндикатор, принцип действия которого определяется используемым в канале методом измерения азимута. При таком построении азимутального канала его пропускная способность не ограничена. В настоящее время различают три основные модификации угломерных систем МВ диапазона:

с измерением фазы огибающей АМ колебаний (VOR);

с двухступенчатым измерением фазы (PVOR);

с использованием эффекта Доплера (DVOR).
VOR . Радиомаяки VOR имеют две передающие антенны:

ненаправленную антенну А 1 с диаграммой направленности (ДНА) в горизонтальной плоскости ;

направленную антенну А 2 с диаграммой направленности в горизонтальной плоскости .

В любом азимутальном направлении значение диаграммы направленности А 2 характеризуется величиной .

Антенна А 1

(1.1)

с амплитудой .

Антенна А 2 в любом азимутальном направлении создает поле

с амплитудой . (1.3)

Обычно для радиомаяков VOR выполняется условие .

Диаграммы излучения антенн радиомаяка VOR показаны на рис. 1.6(а).

Высокочастотные сигналы формируются одним передатчиком и излучаются антеннами, имеющими общий фазовый центр. При сложении полей в пространстве образуется суммарное поле всенаправленного РМ (рис. 1.6(б))
.


Рис. 1.6. Диаграммы излучения антенн радиомаяка VOR
С учетом выражений (1.2) и (1.3) величину суммарного поля можно выразить

. (1.4)

Диаграмма направленности А 2 вращается в горизонтальной плоскости с угловой скоростью

где n – частота вращения ДНА в минуту.

Длительность одного оборота Т равна периоду вращения, , а частота . Частота вращения в VOR составляет n=1800 об/мин (F=30 Гц) .

Положение диаграммы направленности А 2 (положение ее максимумов) – функция времени . Вращение антенны вызовет периодическое изменение суммарного поля. Обозначим отношение амплитуд и, подставив в (1.4) значения и , получим

В результате образуется поле с глубиной амплитудной модуляции , частотой модуляции и фазой огибающей, зависящей от азимута . Колебания, принимаемые бортовым приемником, можно представить выражением

где К – коэффициент, учитывающий ослабление.

После усиления и детектирования можно выделить напряжение низкой частоты
, (1.7)

фаза которого содержит информацию об азимуте самолета :
. (1.8)

Для выделения этой информации на борту ЛА необходимо иметь опорное колебание, несущее информацию о мгновенном положении ДНА. Эта информация должна быть заложена в фазе опорного колебания

с текущим значением фазы
(1.9)

соответствующим угловому положению ДНА в данный момент времени t .

При наличии на борту ЛА такого опорного напряжения можно определить азимут ЛА как разность фаз опорного и азимутального сигналов (1.8) и (1.9):

Для работы бортового измерителя необходим опорный сигнал, причем одинаковый для всех ЛА. Этот сигнал необходимо передавать по отдельному каналу связи. В целях сокращения частотных каналов связи опорный сигнал в этих системах передают на той же несущей частоте , что и азимутальный. Разделение азимутального и опорного сигналов по каналам происходит на приемной стороне методом частотной селекции продетектированного по амплитуде комбинированного сигнала. Такая возможность появляется при использовании для передачи опорного сигнала двойной амплитудно-частотной модуляции.

Рассмотрим формирование сигналов наземным оборудованием и работу бортового оборудования на примере упрощенной структурной схемы канала VOR (рис. 1.7).

В передатчике (ПРД) формируются высокочастотные колебания частоты . В делителе мощности (ДМ) ВЧ сигнал разделяется на два канала. Часть мощности поступает во вращающуюся антенну А 2 . Частота вращения антенны определяется блоком управления (БУА) и равна F=30 Гц. В радиомаяках применялись различные способы вращения антенны. В первых радиомаяках вращение антенны осуществлялось механическим способом при помощи электродвигателя. Другой способ предусматривает применение гониометрических антенных систем. Позднее были разработаны методы электронного вращения ДНА (метод электронного гониометра), при котором эффект вращения ДНА достигается питанием двух взаимно перпендикулярных направленных антенн с диаграммами в виде восьмерки. Питание антенн осуществляется балансно-модулированными колебаниями со сдвигом по фазе огибающей модуляции на 90°. Антенной А 2 создается электромагнитное поле (1.2).



Рис. 1.7. Структурная схема канала VOR
Антенна А 1 является ненаправленной и предназначена для формирования суммарной диаграммы направленности типа «кардиоида» и передачи опорного сигнала. Для формирования сигнала с двойной амплитудно-частотной модуляцией выбирают колебания, частота которых намного больше частоты вращения ДНА, но существенно меньше частоты несущих колебаний, и используют эти колебания в качестве вспомогательных. Вспомогательные колебания называются поднесущей, для которой должно выполнятся условие , где – частота поднесущих колебаний. Для системы VOR частота поднесущей равна F П =9960 Гц.

В модуляторе поднесущей (МП) осуществляется частотная модуляция поднесущей опорными колебаниями частотой F ОП =30 Гц с девиацией частоты ΔF П =480 Гц при индексе модуляции . В модуляторе МВЧ высокочастотные колебания модулируются по амплитуде напряжением поднесущей с глубиной модуляции .

Антенна А 1 создает поле с напряженностью

где – коэффициент амплитудной модуляции; – коэффициент частотной модуляции; – девиация поднесущей частоты.

Суммарное поле


воздействует на антенну бортового оборудования А 0 . На выходе антенны получается суммарное колебание вида

Амплитудно-частотный спектр суммарного колебания показан на рис.1.8(а).


Рис. 1.8. Амплитудно-частотный спектр:

а) принятого сигнала;

б) огибающей принятого сигнала
Бортовым оборудованием необходимо выделить из суммарного азимутальный и опорный сигналы и произвести их сравнение по фазе.

После преобразования суммарного сигнала в приемном устройстве (ПРМ), усиления его и детектирования амплитудным детектором выделяется огибающая, содержащая азимутальный и опорный сигналы вида
, (1.12)

где и – амплитуды составляющих полного сигнала.

Из спектра сигнала (1.12), представленного на рис. 1.8(б), видно, что азимутальный и опорный сигналы можно выделить путем частотной селекции. Для этой цели с выхода ПРМ сигнал подается на два фильтра Ф1 и Ф2.

В фильтре Ф1, настроенном на частоту (f=30 Гц ), выделяется азимутальный сигнал или сигнал переменной фазы, а в фильтре Ф2, настроенном на поднесущую частоту (f=9960 Гц ), выделяется частотно-модулированное поднесущее колебание. После симметричного ограничения в усилителе-ограничителе (УО) в частотном детекторе (ЧД) выделяется опорное колебание.

В результате преобразований получены:

азимутальный сигнал ;

опорный сигнал .

Опорное напряжение подается на фазовращатели ФВ1 и ФВ2. В исходном положении ось ФВ1 повернута на произвольный угол b , что вызывает дополнительный сдвиг фазы опорного напряжения на величину b

И . (1.13)

Азимутальное и опорное напряжение подается на фазовый детектор ФД1. Разница фаз между напряжениями на входе

Напряжение на выходе фазового детектора ФД1:

Это постоянное напряжение преобразуется (в ПНН) в сигнал рассогласования с частотой 400 Гц и подается на управляющую обмотку электродвигателя (ДВ), который поворачивает ось ротора фазовращателя ФВ1 до тех пор, пока разность фаз не станет равной нулю. При этом и . Таким образом, угол поворота ротора фазовращателя ФВ1 становится равным азимуту самолета. Ось ФВ1 связана с осью сельсин-датчика (СД), который передает результаты измерений на указатели азимута.

В системе VOR предусмотрена возможность полета самолета по заданному азимуту . Для этого в схему введены ФД2 и ФВ2. Ось ФВ2 поворачивается вручную и устанавливается на заданный угол . При этом фаза опорного напряжения дополнительно сдвигается на величину и становится

. (1.16)

Это напряжение подается на вход ФД2. На второй вход подается азимутальное напряжение с фазой

.

Разность фаз азимутального и опорного напряжений на входе ФД2

После фазового детектирования согласно (1.15) на выходе детектора
.

Когда , и азимут самолета совпадает с заданным направлением. Эта задача решается при полете ЛА на радиомаяк VOR или от него. Для индикации полета на радиомаяк или от него в схему вводится ФД3, на который подаются.

Принцип действия VOR. Радиомаячная угломерная система VOR (Very High Frequency Omni-directional Range) включает в себя наземное оборудование – радиомаяк VOR, и бортовое оборудование, принимающее сигналы этого радиомаяка.

Система работает в УКВ диапазоне на частотах от 108,0 до 117,95 МГц, что соответствует длине волны около 3 м. В принципе частоты радиомаяков всегда кратны 0,05 МГц (50 кГц), например, 108,05 Мгц, 110,80 МГц, 112,65 МГц и т.д. Во многих регионах мира для радиомаяков используют только те частоты, которые кратны одной десятой мегагерца и тогда, вместо, например, 110,80 указывают 110,8 МГц.

Часть указанного диапазона (а именно от 108 до 111,95 МГц) занимает одновременно и другая навигационная система – радиомаячная система посадки ILS (Instrument Landing System), но у неё первая цифра частоты после запятой всегда нечетная (например, 108,35 МГц). Соответственно, у VOR, работающих в этой же части диапазона (а это аэродромные радиомаяки), такая цифра четная, например, 110,80 Мгц. В оставшейся части диапазона (свыше 112 МГц) работают трассовые радиомаяки VOR и частоты могут быть любые, но также с дискретностью 50 кГц.

На одной и той же несущей частоте радиомаяк излучает два вида сигналов по двум диаграммам направленности: опорный (reference) сигнал и переменный (variable) сигнал. Опорный сигнал промодулирован по частоте огибающей синусоидой с частотой 30 Гц и имеет круговую диаграмму направленности, то есть излучается одинаково во все стороны. В любой точке пространства фаза огибающей опорного сигнала одинакова (рис. 5.1).

У переменного сигнала диаграмма излучения направленная и имеет форму «восьмерки». Если бы ориентация этой «восьмерки» была постоянной, то в любой точке пространства амплитуда принимаемого сигнала была бы постоянной и зависела бы от угла между направлением оси «восьмерки» (здесь будет максимальная амплитуда) и направлением на данную точку.

Но эта диаграмма вращается вокруг вертикальной оси со скоростью 30 оборотов в секунду (в современных VOR вращение создается электронным путем при неподвижной антенне). А 30 оборотов в секунду это и есть 30 Гц. В результате получается, что в любой точке пространства амплитуда принимаемого сигнала меняется с частотой 30 Гц, то есть сигнал оказывается амплитудно промодулированным этой частотой. При этом фаза огибающей будет различной по разным направлениям от радиомаяка. Ведь из-за вращения диаграммы максимум амплитуды сначала пройдет через одно направление, потом через другое…

В направлении на север, где пеленг равен нулю, фазы огибающих опорного и переменного сигналов совпадают. По любому другому направлению эти два сигнала оказываются сдвинутыми по фазе как раз на такую величину, которая равна углу между северным направлением меридиана и данным направлением. А ведь это и есть пеленг этого направления Пс.


Рис. 5.1. Диаграммы направленности VOR

Разумеется, в любой точке пространства оба сигнала (опорный и переменный) складываются, но бортовое оборудование позволяет их разделить – ведь в одном из них использована частотная модуляция, а в другом – амплитудная. Эти две выделенные огибающие сдвинуты по фазе друг относительно друга. Данный сдвиг, выявленный бортовым оборудованием и выраженный в градусах, и является пеленгом данной точки от радиомаяка.

Из изложенного должно быть понятно, что с помощью VOR измеряется пеленг ВС относительно меридиана, проходящего через радиомаяк.

Обозначение VOR на картах. Символы, обозначающие радиомаяк VOR, различаются на картах, выпускаемых разными фирмами, а также на разных видах карт одной и той же фирмы. Наиболее часто используется небольшой символ азимутального круга – кружек с градусными делениями. Иногда он имеет небольшую стрелку в виде флажка, направленного на север. В последнее время компания Джеппесен обозначает VOR в виде шестиугольника или шестиугольника вместе с азимутальным кругом (рис.5.2).

Рис.5.2. Символы радиомаяка VOR на современных маршрутных картах компании Джеппесен

Если в том же месте, что и VOR, установлен и радиомаяк другой навигационной системы (дальномерный маяк DME или угломерно- дальномерный маяк TACAN – о них речь будет идти в последующих главах), то к шестиугольнику добавляется символ этого маяка, например, квадрат в случае DME (рис. 5.3).

Рис.5.3. Символы VOR, совмещенного с другим средством

Ввиду многообразия символов VOR опознавать их на карте лучше не по виду символа, а по информации в «боксе», который нанесен рядом с каждым радионавигационным средством. Убедиться, что в данном месте находится именно VOR, а не какое-то другое средство, можно по следующим признакам:

– частота лежит в пределах от 108 до 118 МГц (единицы измерения частоты в боксе не указываются, но это не вызывает недоразумений, поскольку в таком диапазоне в килогерцах ни одна навигационная система не работает);

– частота всегда указана с дробной частью, даже если значение круглое (например, 112,3; 116,0);

– позывной состоит из трех букв.

Так, на рис. 5.4(а) VOR с наименованием ALTAY обозначен шестиугольником и азимутальным кругом. Шестиугольник заштрихован, поскольку эта точка является пунктом обязательного донесения. Частота 114,3 МГц, позывной TAI (позывной также повторен символами азбуки Морзе). Координаты радиомаяка 47º44,8" северной широты, 88º 05,0" восточной долготы. Звездочка возле частоты указывает, что радиомаяк работает не круглосуточно. В этом же месте установлен дальномерный радиомаяк DME. Об этом свидетельствует маленькая буква D возле частоты, а также символ в виде квадрата (он охватывает шестиугольник).

На рис. 5.4(б) VOR изображен в виде азимутального круга с флажком. Наличие DME указывает буква D возле частоты. Здесь же указана буква Н в скобках, которая обозначает класс VOR (H – High, радиомаяк для использования в верхнем воздушном пространстве).

Рис. 5.4. Информация о VOR на маршрутных картах

На рис. 5.4(в) радиомаяк VOR обозначен просто небольшим кружком внутри черного треугольника (сам треугольник обозначает пункт обязательного донесения). Но внутри бокса также указана вся необходимая информация.

Радиомаяки VOR и их классификация. Радиомаяк VOR передает азбукой Морзе свой позывной, состоящий из трех букв. Большинство радиомаяков способны передавать информацию в телефонном режиме, то есть голосом. Некоторые голосом передают свой позывной или название, например, «Brindisi VOR». Если маяк временно не работает (например, находится на техническом обслуживании), то он ничего не передает, либо передает азбукой Морзе слово TEST (─ ─). Разумеется, в этом случае его использовать нельзя.

VOR является одним из самых давно используемых навигационных средств. За годы эксплуатации конструкция маяков неоднократно совершенствовалась, они выпускаются разными фирмами, поэтому выглядеть могут совершенно по-разному (рис.5.5-5.8). Выпускается такое оборудование и в России. В документах аэронавигационной информации они также обозначаются как VOR, хотя официально имеют другие названия, присвоенные их производителями (например, «радиомаяк азимутальный»).

Рис. 5.5.. Радиомаяк азимутальный РМА-90 (Россия)

Рис. 5.6. Радиомаяк азимутальный доплеровский DVOR-2000 (Россия)

Рис. 5.7. VOR, совмещенный с DME

Рис.5.8. Доплеровский VOR, совмещенный с TACAN

За рубежом маяки классифицируются в зависимости от объема воздушного пространства, в котором предполагается их применение. Поскольку маяки работают в УКВ диапазоне, то в принципе максимальная дальность их действия определяется дальностью прямой видимости (см. параграф 2.6) и зависит от высоты полета. Но если радиомаяк будет использоваться лишь в ограниченном районе (например, в районе аэродрома), то он может работать на пониженной мощности, что, естественно, повлияет на дальность уверенного приема сигнала.

Радиомаяки класса T (Terminal, что в данном случае можно перевести как «аэродромные») предназначены для навигации в районе аэродрома и должны обеспечивать получение навигационной информации на высотах от не менее 300 до примерно 4000 м на удалении не менее 25 морских миль (это примерно 46 км).

Радиомаяки класса L (Low Altitude, малых высот) должны обеспечивать прием сигнала от них на высотах от не менее 300 м до 18 000 футов (около 5500 м) на удалении до 40 морских миль (74 км).

Радиомаяки класса H (High Altitude, больших высот) должны обеспечивать прием сигнала (рис. 5.9):

– на высотах от 300 м до 14500 футов (примерно 4400 м) до удаления 40 морских миль (74 км);

– на высотах от 14 500 футов до 60 000 футов (около 18 300 м) – на удалении до 100 морских миль (185км);

– на высотах от 18 000 футов до 45 000 футов (около 13700 метров) до удаления 130 морских миль (240 км).

Рис. 5.9. Объем воздушного пространства, в котором радиомаяк VOR должен обеспечивать получение информации

Указанные значения задают так называемый «рабочий объем воздушного пространства» (service volume), в котором гарантируется уверенный прием сигналов именно того радиомаяка, на который настроился пилот. Может вызвать недоумение тот факт, что в соответствии с приведенными выше цифрами и рис. 5.9, дальность на высотах выше 45000 фт меньше, чем ниже этой высоты (100 морских миль вместо 130). Ведь, казалось бы, чем больше высота, тем больше должна быть дальность.

Но указанные дальности, это вовсе не максимальные дальности на которых возможен прием сигнала. Как правило, сигнал можно принимать и на больших удалениях. Эти дальности кроме обеспечения приема сигнала еще и гарантируют, что находясь в их пределах, ВС не попадет в зону действия другого радиомаяка, работающего на такой же или близкой частоте. Именно потому, что с высотой реальная дальность действия возрастает, на больших высотах (выше 45000 фт) может оказаться, что ВС оказалось в зоне действия двух радиомаяков. И если их частоты близки, то на какой из них окажется настроенным бортовое оборудование – неизвестно. Поэтому установленная дальность 100 миль (для больших высот) просто гарантирует, что на меньших удалениях такого не произойдет.

Радиомаяки непрерывно совершенствуются. PVOR (Precision VOR) является дальнейшим развитием системы. Он имеет диаграмму направленности в виде нескольких лепестков. Для устранения вызванной этим неоднозначности используются два канала измерения пеленга – грубый и точный. PVOR обеспечивает более точное измерение пеленга и менее подверженное помехам.

DVOR (Doppler VOR – доплеровские VOR) являются более точными, но и более сложными. В таких радиомаяках опорный сигнал имеет амплитудную модуляцию, а переменный сигнал – частотную, то есть как раз наоборот по сравнению с обычными радиомаяками. Это способствует уменьшению помех, например, от местных предметов вблизи радиомаяка.

Эффект вращения диаграммы направленности создается электронным путем многочисленными неподвижными антеннами, расположенными по окружности диаметром 13,4 м (см. рис. 5.6). При таком диаметре и вращении со скоростью 30 оборотов в секунду линейная скорость вращения диаграммы (1264 м/с) превышает скорость звука. Из-за этой линейной скорости для наблюдателя, находящегося в стороне от радиомаяка, получается доплеровский сдвиг частоты. Напомним, что эффект Доплера заключается в том, что при приближении источника излучения к наблюдателю воспринимаемая частота больше фактически излучаемой. При удалении – наоборот.

Антенна, излучающая опорный сигнал, несколько смещена от центра вращения диаграммы переменного сигнала. Именно ее расположение является точкой начала отсчета пеленга. Из-за смещения антенны переменного сигнала его доплеровский сдвиг будет зависеть от направления излучения, отсчитываемого от антенны опорного сигала. Принимая на борту оба сигнала можно более точно измерить пеленг.

Несмотря на разнообразие видов радиомаяков, бортовое оборудование может работать с любым из них. Пилот может и не знать, с маяком какого вида он сейчас работает.

Разработаны и еще более совершенные PDVOR (Precision Doppler VOR), но для работы с ними уже должны использоваться другие приемники.

Навигационный параметр, измеряемый VOR. Как следует из описанного выше принципа работы данной навигационной системы бортовое оборудование путем измерения разности фаз опорного и переменного сигналов определяет пеленг самолета относительно меридиана, проходящего через радиомаяк. Какого именно меридиана? В подавляющем большинстве случаев радиомаяки ориентируются так, что нулевое значение пеленга совпадает с северным направлением магнитного меридиана радиомаяка. Поэтому с помощью VOR непосредственно измеряется магнитный пеленг самолета (МПС) относительно меридиана радиомаяка. Так мы далее и будем считать в данном учебном пособии.

На самом деле в полярных районах (например, на севере Канады) радиомаяки ориентируют по истинному меридиану, поскольку магнитное склонение там велико и достаточно быстро меняется. В таких случаях об этом обязательно указывается на полетной карте. Так, на рис. 5.10 указано «VOR/DME Oriented True North» (VOR/DME ориентирован на истинный север). Соответственно и заданный путевой угол от этого радиомаяка указан истинный, что обозначено буквой T (указано 214ºT).

5.10. VOR в полярном районе

Применительно к использованию VOR магнитный пеленг самолета получил еще и другое широко употребляемое название – радиал (radial). По сути радиал - это просто и есть магнитный пеленг самолета от радиомаяка – просто другое, более короткое название. Радиалы выражают целым числом (доли градуса не используют) и обозначают либо так же как пеленги, например, 128º, либо как R-128 (в этом случае значок градусов не указывают). Можно считать, что от радиомаяка исходят 360 направлений (радиалов) во все стороны, как на рис.5.11.

Рис. 5.11. Радиалы (пеленги)

Важно помнить, что радиал – это всегда направление ОТ радиомаяка. Использовать этот термин применительно к направлению НА маяк (то есть к МПР) нельзя.

Таким образом, можно сказать, что с помощью VOR непосредственно измеряется текущее значение радиала ВС.

Некоторое различие между радиалом и ЗМПУ все же имеется (точнее – может иметься). Действительно, VOR ориентируют по магнитному меридиану пункта, в котором он расположен (например, ППМ) и тогда радиал и ЗМПУ совпадают. Но ведь магнитное склонение со временем меняется, хотя и медленно. Северное направление магнитного меридиана через пару-тройку лет станет другим, а радиомаяк останется ориентированным как и прежде. Поэтому для выдерживания ЛЗП по- прежнему необходимо выдерживать все тот же опубликованный когда-то на карте радиал. Но он уже не будет совпадать с ЗМПУ. Ведь ЗМПУ, так же как и измеряемый компасом магнитный курс, отсчитываются от фактического направления магнитного меридиана (вектора напряженности магнитного поля Земли), которое уже изменилось.

Для каждого радиомаяка VOR публикуется значение угла между северным направлением истинного меридиана и направлением нулевого радиала. По-английски эта величина называется Declination. На русском языке она общепринятого названия пока не имеет, но иногда называется «склонением станции». Теоретически она должна совпадать с магнитным склонением, но по описанным выше причинам может со временем от него и отличаться.

По правилам, принятым в США, если Declination отличается от магнитного склонения более, чем на 2º, то радиомаяк необходимо заново выставить по магнитному меридиану. Но на практике, видимо, из-за финансовых соображений, это не всегда делается и иногда эта разница достигает 4-5º.

На современных ВС для каждого радиомаяка величина declination хранится в бортовых базах аэронавигационных данных и учитывается при автоматизированной навигации.

Автоматизированное выполнение полета по ЛЗП. На всех ВС, имеющих бортовое оборудование для работы с радиомаяками VOR, имеется возможность автоматизировать определение уклонения от ЛЗП при полете на или от радиомаяка. Это означает, что пилоту нет необходимости каждый раз отсчитывать с индикатора показания пеленга, чтобы сравнить их с заданным путевым углом. Прибор сам покажет сторону и величину уклонения.

На ВС зарубежного производства соответствующий режим работы оборудования обозначается OBS (Omni bearing selector). Используется специальный индикатор CDI (Course Deviation Indicator –индикатор отклонения от заданного путевого угла) (рис. 5.15).

Рис. 5.15. Course deviation indicator

С помощью кремальеры “OBS” пилот вращает шкалу CDI и устанавливает напротив треугольного индекса значение ЗМПУ линии заданного пути, проходящей через радиомаяк. Бортовое оборудование само определяет, выполняется полет на радиомаяк или от него, сравнивая направление на самолет с установленным путевым углом.

Если измеренный текущий радиал ВС (направление на ВС от радиомаяка) направлен примерно в ту же сторону, что и установленный ЗМПУ (находится от него в секторе ±90°), то предполагается, что полет выполняется от маяка и загорается надпись “FR” (from – от). В противном случае, когда направление на самолет противоположно установленному ЗМПУ (то есть лежит в секторе ±90° от ЗМПУ±180°), то загорается надпись “TO” (на) (рис. 5.16).

Рис. 5.16. Формирование сигналов “FROM” или “TO”

Следует подчеркнуть, что бортовое оборудование не может определить, в какую сторону на самом деле летит самолет. Оно только определяет, в каком направлении находится самолет: в том же, что и установленный путевой угол, или в противоположном. Например, если установлено значение ЗМПУ=50°, а направление на самолет (радиал) 60°, то гореть будет надпись «от» независимо от того, летит ВС от радиомаяка или развернулось и летит уже на маяк.

Для определения величины уклонения фактическое значение радиала сравнивается с тем его значением, при котором ВС находилось бы на ЛЗП (при полете от маяка этот радиал равен установленному ЗМПУ, а при полете на маяк ЗМПУ±180°). Напряжение, пропорциональное разности заданного и фактического радиалов поступает на CDI и вызывает отклонение вертикальной планки от центра прибора вправо или влево (рис. 5.17 и 5.18).

Рис. 5.17. Полет от радиомаяка

Рис. 5.18. Полет на радиомаяк

Показания этого индикатора можно интерпретировать следующим образом. Кружок в центре прибора – это ВС. Вертикальная планка – это ЛЗП. Если планка находится в левой части прибора (как на рис. 5.17), то ЛЗП находится слева от самолета, следовательно, самолет уклонился вправо от ЛЗП. Пилот должен уменьшить курс, довернув влево, и по мере приближения к ЛЗП планка будет приближаться к центру прибора. Таким образом, для следования по ЛЗП необходимо стремиться выдерживать вертикальную планку в центре.

Следует подчеркнуть, что величина отклонения планки соответствует не линейному (выраженному в километрах), а угловому отклонению самолета (в градусах). То есть, при полете от маяка – соответствует БУ, а на маяк – ДП. На зарубежных ВС максимальное отклонение планки соответствует величине БУ (ДП) 10°, следовательно, расстояние между двумя смежными точками на приборе соответствует 2° .Зная угловую величину уклонения и расстояние до маяка можно рассчитать и ЛБУ. Впрочем, величину БУ или ДП легко определить и отсчитав пеленг по РМИ, без использования CDI.

На многих ВС отечественного производства для работы с радиомаяками VOR используется бортовое оборудование КУРС-МП (например, КУРС-МП-2, КУРС-МП-70). Оно имеет двоякое назначение. При заходе на посадку оно работает с радиомаячными системами посадки (ILS, СП). Применение его для этих целей будет рассмотрено в другой части данного учебного пособия. Но это же оборудование может быть использовано для выполнения полета на или от радиомаяка VOR. Принцип его работы в этом случае аналогичен рассмотренному режиму OBS, но с некоторыми особенностями.

ЗМПУ устанавливается на отдельном пульте, называемом «Селектор курса» (рис. 5.19). Это название, присвоенное разработчиками оборудования, является неправильным, поскольку на селекторе с помощью кремальеры устанавливается не курс, а путевой угол (course). Переключатель в центре этого пульта должен обычно находиться в нижнем положении. В этом случае загораются табло «от» или «на» в зависимости от соотношения установленного ЗМПУ и текущего радиала, аналогично тому, как в режиме OBS на зарубежных ВС. Но здесь имеется и дополнительная возможность.

Рис. 5.19. Селектор курса в оборудовании Курс-МП

Допустим ВС выполняло полет от радиомаяка и вертикальная планка правильно показывала сторону уклонения от ЛЗП (вправо или влево). Если ВС развернется в обратную сторону и будет выполнять полет на радиомаяк, для него «право» и «лево» поменяются местами, то есть, если самолет находился справа, то после разворота в обратную сторону он будет слева. Но бортовое оборудование КУРС-МП не знает, в какую сторону на самом деле летит ВС и по-прежнему будет считать, что выполняется полет от радиомаяка. Поэтому планка будет показывать сторону уклонения как и раньше, то есть ровно наоборот по сравнению с фактическим уклонением. Но абсолютная угловая величина уклонения будет индицироваться правильно. Для правильной индикации стороны уклонения следовало бы изменить установленный ЗМПУ на 180°. Но в КУРС-МП можно в такой ситуации поступить проще – поставить переключатель в верхнее положение. При этом загорится табло «на» и индикация станет правильной.

При использовании CDI, да и вообше VOR и других РНС, необходимо учитывать, от какого именно меридиана отсчитывается ЗПУ, а от какого – пеленг.

Предположим пилот хочет выполнить полет с использованием CDI от пункта САНУЛ на VOR КОТЛАС (рис.5.20).

Рис. 5.20. Определение ЗМПУ для установки на OBS

Для этого на OBS необходимо установить ЗМПУ. Первое, что приходит в голову – установить ЗМПУ=62, поскольку именно это значение указано в начале участка маршрута. Но это неверно, поскольку данное значение ЗМПУ указано от меридиана, проходящего через САНУЛ. А для правильной работы системы необходимо, чтобы ЗМПУ отсчитывался от того же меридиана, от которого измеряется пеленг, то есть от магнитного меридиана Котласа.

Разумеется, можно «перевести» ЗМПУ от меридиана САНУЛ к меридиану Котласа, используя, например, мнемоническое правило (для этого к значению 62 нужно прибавить магнитное склонение в САНУЛ, прибавить модуль угла схождения меридианов и вычесть магнитное склонение в Котласе). Но в данном случае в таком расчете нет необходимости. Ведь на карте указан и обратный путевой угол (из Котласа в САНУЛ), равный 244. А этот ЗМПУ как раз и отсчитан от магнитного меридиана Котласа, который нам нужен. Правда, это ЗМПУ «обратно», а нам нужно «туда». Но направления «туда» и «обратно», если они отсчитаны от одного и того же меридиана, различаются ровно на 180° . Поэтому для полета на Котлас на OBS нужно установить 64 (то есть 244-180). Это и будет направление нашей ЛЗП, отсчитанное от магнитного меридиана Котласа. После его установки на CDI появится флажок «НА» и планка будет показывать, с какой стороны находится заданная нами ЛЗП.

Если после пролета Котласа необходимо лететь и дальше на восток по той же трассе Р30, то необходимо просто установить ЗМПУ=38, указанный на карте. Ведь это и есть путевой угол от меридиана ППМ Котлас, где и установлен радиомаяк. После пролета радиомаяка загорится надпись «ОТ».

Если не учитывать от какого меридиана что отсчитывается, то трудно обеспечить точную навигацию. Иногда приходится слышать от пилотов, что, мол, при полете от VOR лечу точно по ЛЗП, а когда настраиваюсь на VOR, расположенный впереди, получается, что самолет якобы уклонился. При этом пилоты грешат на погрешности наземного оборудования. Мол, радиомаяк неправильно установлен. Что ж, иногда бывает и так. Но чаще причина в том, что пилот использовал значение ЗМПУ не от того меридиана, от которого нужно.

С помощью CDI можно выполнить вписывание (interception) в новую ЛЗП. Предположим, что по каким-то причинам после пролета САНУЛ поступило указание диспетчера сойти со своей трассы, вписаться в трассу Р22 (на участок ПАНУС- Котлас) и дальше следовать на Котлас уже по ней.

Для этого пилот устанавливает для новой ЛЗП ЗМПУ=48 (подумайте, почему) и планка на CDI уйдет далеко вправо. Ведь самолет пока находится на прежней трассе и оказался далеко слева от новой ЛЗП. Затем пилот выполняет разворот вправо, чтобы с выбранным углом выхода (например, 40-50) выйти на новую трассу Р22. По мере приближения к ней вертикальная планка будет смещаться к центру прибора (ЛБУ уменьшается) и пилот может плавно вписаться в новую ЛЗП.

Такого рода процедуры приходится часто выполнять при полете по аэродромным схемам.

Кстати, не следует путать похожие слова interception (вписывание) и intersection (пересечение, перекресток). Словом intersection обозначают точки на маршруте, которые заданы путем пересечения ЛЗП с ЛРПС (линией пеленга или радиала). Такой точкой является, например, пункт MATIX на рис.5.12).

Предназначен для формирования в пространстве навигационных сигналов с информацией:

    Об азимуте любой точки зоны действия относительно магнитного меридиана.

    об отклонениях вс от заданного пеленга

    Индикация «от-на»,которая говорит о направлении полета

    сигналы опознавания(морзянка)

    речевые сообщения(метровый диапазон)960-1215 мгц

Наземный всенаправленный азимутальный ОВЧ-радиомаяк (РМА) предназначен для измерения азимута воздушного судна относительно места установки маяка при полетах ВС по трассам и в зонах аэродромов.

РМА используется ВС для захода на посадку по приборам, в случае если антенная система РМА юстирована по магнитному меридиану, а РМА расположен на осевой линии взлетно-посадочной полосы (далее – ВПП) (в створе ВПП) или в стороне от осевой линии, но при этом:

    если линии пути конечного этапа захода на посадку пересекает продолжение осевой линии ВПП, то точка пересечения должна находиться на расстоянии не менее 1400 м от порога ВПП, а угол пересечения не должен превышать 30° для схем захода на посадку, предназначенных только для воздушных судов категории А, В и 15° для остальных схем;

    если линия пути конечного этапа захода на посадку не пересекает продолжение осевой линии ВПП перед порогом, то угол между линией пути конечного этапа захода на посадку и продолжением осевой линии ВПП должен быть менее 5°, а на расстоянии 1400 м от порога ВПП линия пути конечного этапа захода на посадку должна проходить не далее 150 м от продолжения осевой линии ВПП.

Примечание: РМА считается расположенным в створе ВПП, если магнитный путевой угол (МПУ) последней прямой захода на посадку отличается от МПУ залегания ВПП, используемой для посадки, на угол не более ±5°.

РМА, РМД и РМА/РМД должны быть размещены на трассе или аэродроме в соответствии с требованиями технической документации на данный тип оборудования, таким образом, чтобы максимально обеспечить решение навигационных задач. Место размещения РМА должно быть ровным или иметь уклон не более 4% на расстоянии до 400 м от маяка. Место установки РМА должно находиться возможно дальше от ограждений и воздушных проводных линий, высота которых должна быть относительно центра антенны составлять угол не более 0,5 град. Сооружения не должны находиться ближе 150 м от позиции и иметь угол места более 1,2 град. Антенное устройство РМД должно быть расположено над антенным устройством маяка РМА при использовании приемоответчика РМД совместно с маяком РМА. Допускается разнесение антенных устройств РМД и РМА на расстояние не более30 м при обеспечении полетов в районе аэродрома и не более 600 м при обеспечении полетов по воздушным трассам.

Радиомаяк азимутальный VOR (РМА-90) является наземным оборудованием азимутальной системы навигации воздушных судов метрового диапазона волн с форматом сигналов VOR, и рекомендован ICAO в качестве основного средства измерения азимута на авиатрассах или в качестве дополнительного средства обеспечения захода на посадку и посадки самолетов гражданской авиации (ГА). (РМА-90) предназначен для формирования в пространстве навигационных сигналов, содержащих информацию об азимуте любой точки зоны действия относительно точки установки радиомаяка, и сигналов опознавания радиомаяка.

При одновременном приеме бортовой аппаратурой сигналов двух VOR может быть определено положение воздушного судна. Для этого необходима карта и знание местоположения радиомаяков. VOR может объединяться с дальномерным радиомаяком DME/N. В этом случае при наличии на борту воздушного судна соответствующей дальномерной аппаратуры достаточно одного совмещенного радиомаяка VOR/DME для определения положения воздушного судна в системе полярных координат «азимут - дальность».

Принцип работы

Амплитудно-частотно-модулированный сигнал опорной фазы излучается неподвижной всенаправленной антенной. Амплитудно-модулированный частотой 30Гц сигнал переменной фазы излучается вращающейся (30 об/с) направленной антенной с диаграммой направленности в виде "восьмёрки".

Складывающиеся в пространстве диаграммы направленности образуют переменное по амплитуде поле, изменяющееся с частотой 30Гц. Радиомаяк VOR ориентирован так, что фазы опорного и переменного сигналов совпадают в направлении магнитного северного меридиана. В момент, когда максимум диаграммы направленности вращающегося поля направлен туда, частота сигнала поднесущей имеет максимальное значение(1020Гц). В остальных направлениях фазовый сдвиг меняется от ноля до 360 градусов. Упрощённо можно представить VOR как радиомаяк, излучающий в каждом направлении свой индивидуальный сигнал. Количество таких "сигналов-азимутов" определяется только чувствительностью бортового оборудования к величине сдвига фаз, прямо пропорционального текущему азимуту ЛА относительно радиомаяка. В этом контексте, вместо понятия "азимут" употребляется термин радиал (VOR Radials). Принято считать что количество радиалов равно 360. Номер радиала совпадает с числовым значением магнитного азимута.

Основные технические характеристики VOR (РМА-90)

Зона действия:

    в горизонтальной плоскости от 0 до 360

    в вертикальной плоскости (относительно поверхности ограничения прямой видимости), град не более 3

    снизу, град не менее 40

    сверху, град по дальности: не менее 300

    на высоте 12000 м, км не менее 100

    на высоте 6000 м (при половинной мощности), км

    Поляризация излучения горизонтальная

    Погрешность информации об азимуте в точках на удалении 28 м от центра антенны, град не более 1

    Частота рабочего канала (несущих колебаний), одно из дискретных значений в диапазоне 108,000-117,975 МГц через 50 кГц

    Мощность несущих колебаний (регулируемая), Вт от 20 до 100

    Габаритные размеры и масса шкафа РМА 496x588x1724 мм; не более 200 кг

    Диаметр экрана антенны РМА 5000 мм

    Масса антенны РМА

    без экрана 130 кг

    :: Текущая]

    Основы VOR-навигации


    Основным навигационным средством в большинстве стран является VOR (VHF Omnidirectional Range navigation system), что в переводе на русский называет всенаправленный курсовой радиомаяк УКВ диапазона . Появившиеся в последнее время спутниковые навигационные системы не заменяют VOR, а дополняют их.

    Самолеты летают по воздушным трассам, которые строятся из отрезков. Отрезки образуют сеть, опутывающую целые государства. В узлах этой сети (на концах отрезков) расположены VOR-радиостанции.

    Радиомаяк VOR состоит из двух передатчиков на частотах 108,00-117,95 МГц . Первый передатчик VOR передает постоянный сигнал во все стороны, в то время как второй передатчик VOR представляет собой узконаправленный вращающийся луч , изменяющийся по фазе в зависимости от угла поворота, то есть луч пробегает круг в 360 градусов (как луч маяка). В результате получается диаграмма излучения в виде 360 лучей (один луч через каждый градус окружности). Принимающая аппаратура сравнивает оба сигнала и определяет «угол луча», на котором в данный момент находится самолет. Такой угол называется VOR-радиалом (VOR Radial).

    VOR-оборудование на борту самолета может определить, на каком из VOR-радиалов известной радиостанции находится самолет.


    На пилотажной карте вы можете найти необходимую VOR-станцию. На схеме выше показан самолет, находящийся на радиале 30 от VOR. Каждый VOR имеет свое название (VOR на рисунке называется KEMPTEN VOR) и сокращенное трехбуквенное обозначение (VOR на рисунке обозначается KPT). Рядом с VOR написана его частота, которую надо вводить в приемник. Таким образом, чтобы поймать сигнал от KEMPTEN VOR, надо ввести в приемник частоту 109.60.

    Очень часто самолеты оборудуются не одним, а сразу двумя приемниками VOR. В таком случае один приемник называется NAV 1, а второй соответственно NAV 2. Для ввода частоты в приемник VOR используется двойная круглая ручка. Большая ее часть используется для ввода целых, меньшая - дробных долей частоты VOR. Ниже показана типичная панель управления радионавигационными приборами.


    Задатчики частот VOR подписаны красным цветом. Это простейший вид приемников, который позволяет ввести только одну частоту VOR. Более сложные системы позволяют ввести сразу две частоты VOR, и быстро переключаться между ними. Одна частота VOR является неактивной (STAND BY), ее изменяет ручка задатчика частоты . Вторая частота VOR называется активной (ACTIVE), это та частота VOR, на которую настроен приемник в данный момент.



    На рисунке выше показан пример приемника с двумя задатчиками частоты VOR. Пользоваться им очень просто: при помощи круглого задатчика надо ввести требуемую частоту VOR, а затем сделать ее активной при помощи переключателя. При наведении мыши на колесико задатчика курсор мыши меняет форму. Если он выглядит как маленькая стрелка, то при нажатии на мышь сменятся десятые доли. Если стрелка большая, то изменяться будет целая часть числа.

    В кабине так же должен быть прибор, показывающий, на каком радиале VOR в данный момент находится самолет. Этот прибор обычно называется NAV 1, или VOR 1. Как мы уже выяснили, в самолете может иметься второй такой прибор. В самолете Cessna 172 их два:


    Прибор состоит из:

    • подвижной шкалы, напоминающей шкалу компаса
    • круглой ручки задатчика OBS
    • стрелки индикатора направления TO-FROM
    • транспаранта GS
    • двух планок, вертикальной и горизонтальной

    Горизонтальная планка и транспарант GS используются при посадке по системе ILS.

    Ручка OBS вращает подвижную шкалу и настраивает тем самым приемник VOR на требуемый радиал. Например, так может выглядеть прибор, настроенный на радиал 30:


    На рисунке видно, что при вращении ручки OBS шкала поворачивается, и верхний уголок показывает на номер текущего радиала. Как и на компасе, все номера на приборе пишутся деленные на 10, таким образом цифра 3 обозначает радиал 30 .

    Вертикальная планка показывает отклонение от радиала. Если самолет находится на радиале, то планка будет стоять вертикально:



    Если самолет сместится правее радиала, то вертикальная планка отклонится влево, чтобы показать что к радиалу надо лететь в левую сторону.



    Когда пилот видит такую картину, он знает что для выхода на радиал надо повернуть влево. Правило очень простое: планка показывается в той стороне, в которую надо лететь.

    Аналогичная картина будет в случае если самолет окажется левее нужного радиала:



    Обратите внимание, что в данном случае самолет отклонился от радиала сильнее, и планка прибора соответственно так же отклонилась сильнее.

    Важной особенностью VOR является то, что прибор всегда показывает радиал, на котором находится самолет, независимо от курса , которым идет самолет. Например, на рисунке ниже показаны самолеты, летящие разными курсами. Поскольку они находятся на одном и том же радиале и у них одинаково настроен OBS, прибор VOR у всех самолетов покажет одно и то же.



    При полетах по VOR нужно помнить, что чувствительность прибора VOR возрастает при подлете к радиомаяку VOR, пока не пропадает в непосредственной близости от маяка. Около маяка VOR не надо гоняться за планкой, вместо этого, когда чувствительность становится чрезмерной, надо продолжать двигаться прежним курсом пока самолет не пройдет над маяком VOR.

    Итак, чтобы лететь по радиалу VOR надо настроить на приемнике его частоту VOR, задать при помощи OBS номер требуемого радиала и удерживать вертикальную планку по центру прибора. Если планка отклоняется влево, надо довернуть налево. Если вправо, надо повернуть направо. В случае бокового ветра, нужно довернуть на ветер, чтобы компенсировать снос самолета. Более подробно про полет в ветер можно прочитать в статье про NDB навигацию.

    VOR навигация в обратном направлении

    Мы рассмотрели полет по направлению к VOR . Точно также можно летать и в обратном направлении .


    Обратите внимание, что уголок направления показывает теперь на надпись FR , что означает что самолет движется по направлению от VOR . Самолет на рисунке немножко отклонился вправо, поэтому планка на приборе показывает что радиал находится левее.

    Распространенная ошибка , совершаемая многими, заключается в установке неправильного номера радиала . Если бы на рисунке выше пилот вместо радиала 30 установил бы радиал 120, то стрелка показывала бы направление TO , а планка отклонялась бы в противоположную сторону. Поэтому очень важно всегда правильно задавать направление радиала и контролировать расположение VOR по уголку TO-FROM .

    Запомнить, как правильно задавать радиал, очень просто: номер радиала - это курс, которым должен лететь самолет, двигаясь по радиалу в безветренную погоду. При этом не важно, летит самолет от VOR или по направлению к нему, всегда вводите в OBS тот курс, которым хотите двигаться. Номера радиалов VOR соответствуют истинному курсу, а не магнитному.

    Определение текущего радиала VOR

    Иногда бывает нужно определить, на каком радиале в данный момент находится самолет. Для этого надо вращать задатчик OBS до тех пор, пока на приборе стрелка направления не укажет на TO , а планка отклонения не станет строго вертикально. Отложив на карте полученный номер VOR-радиала, можно прикинуть свое местоположения. Правда, это метод не покажет расстояние до VOR.

    Но VOR-станция может иметь еще и дальномерное оборудование (DME - Distance Measurement Equipment). Радиостанции с таким оборудованием обозначаются на карте VOR-DME или VORTAC. Вы увидите расстояние в NM до VOR-станции на приборной доске в окошечке DME1 или DME2 соответственно. Теперь, зная масштаб карты, можно отметить на VOR-радиале точное место самолета в данный момент времени.

    Часто расстояние DME, которое вы видите на приборной доске не соответствует расстоянию по карте. Это расстояние от наземной VOR-радиостанции до вашего самолета, летящего на определенной высоте. Т.е. это гипотенуза прямоугольного треугольника, один катет которого - ваша высота, а второй - расстояние по земле от VOR-радиостанции, до точки над которой вы сейчас пролетаете. Особенно неточными становятся эти данные, когда вы близко от VOR-радиостанции (пролетая строго над ней вы получите свою высоту). Поэтому, нужно резервировать одну-две мили, если коридор в контролируемом воздушном пространстве требует обязательного выхода на связь с диспетчером при пролете VOR-станции.

    Перехват определённого радиала VOR

    Частая навигационная задача - перехват определенного радиала. Например, нам нужно выйти на воздушную трассу, которая проходит по 30-му радиалу VOR. Мы знаем что находимся где-то левее радиала (а если не знаем, то можем это определить так, как было описано выше):

    Первое, что нам надо сделать - это настроиться на частоту VOR и ввести при помощи задатчика OBS требуемый радиал. Прибор покажет примерно следующее:


    Из этого видно, что радиал где-то далеко справа. Теперь надо решить, под каким углом мы будем перехватывать радиал. Самое быстрый способ перехватить радиал - лететь перпендикулярно ему, но это не приблизит нас к конечной точке маршрута. Выбираем разумный компромисс, и двинемся под углом 40 градусов к радиалу. Так как радиал находится справа, чтобы получить курс перехвата, добавим к курсу радиала (30 градусов) угол перехвата (40 градусов), и получим курс перехвата (70 градусов). Если бы радиал находился слева, угол перехвата надо было бы отнимать.

    Довернем на полученный курс перехвата (70 градусов), и начнем путь к радиалу:


    Красной пунктирной линией показан курс перехвата. Лететь этим курсом надо до тех пор, пока прибор не покажет что самолет находится на радиале:



    Все что осталось, это развернуться и полететь по радиалу курсом 30 градусов. Чтобы не перелететь мимо радиала, надо начинать разворот заранее, не дожидаясь пока планка встанет строго вертикально.

    Переход с одного радиала на другой

    Иногда возникают ситуации, когда нужно перейти с одного радиала на другой. Такое может потребоваться при переходе с одной воздушной трассы на другую. Рассмотрим следующий пример, изображенный на схеме:



    Предположим что самолету надо пролететь по радиалу 30 от VOR 1 до точки FIX, после чего необходимо повернуть курсом 90 градусом и двигаться к VOR 2. Эта задача легко решается при помощи использования двух приемников VOR одновременно. В приемник NAV1 введем частоту VOR 1 и настроем его на радиал 30, в приемник NAV2 - частоту VOR 2 и радиал 90 градусов:



    Верхний приемник, настроенный на VOR 1 показывает что самолет находится точно на радиале 30 градусов и летит курсом к нему. Нижний, настроенный на VOR 2, говорит что до радиала 90 градусов еще далеко. Продолжаем движение по радиалу пока второй приемник не покажет, что мы подходим к радиалу 90 градусов:



    Не дожидаясь пока стрелка VOR 2 встанет строго вертикально, заранее начнем разворот на 90 градусов. После разворота останется только продолжить движение по радиалу 90 градусов по направлению к VOR 2:

    Приемник NAV1 больше не нужен, и его лучше настроить на какую-нибудь несуществующую частоту, чтобы случайно не перепутать с NAV2, который используется в данный момент.

    Рекомендуется начать практиковаться на симуляторе VOR, расположенному по адресу: http://www.luizmonteiro.com/Learning_VOR_Sim.htm . Попробуйте настроиться на какой-нибудь радиал и «пролететь» по нему на самолете, обращая внимания куда будет отклоняться стрелка при отдалении от радиала в ту или иную сторону.

    Ограничения VOR-навигации

    Система VOR-навигации - достаточно дорогая в масштабах страны. Дело в том, что VOR-оборудование имеет ограничения по дальности, как любая УКВ радиостанция или телевизионная вышка. УКВ радиосредства работают только в прямой видимости. Это значит, что препятствия могут закрывать от вас VOR-радиостанцию, пока вы не подниметесь на достаточную высоту. Сам радиус действия сигнала VOR также ограничен. До 5500 метров высоты вы можете принимать сигналы VOR на удалении 40-130 NM в зависимости от рельефа местности. Выше VOR-сигналы можно принимать на максимальном расстоянии 130 NM.


    ©2007-2014, Виртуальная авиакомпания X-Airways

    [ :: Текущая]

    Общее описание

    Приёмник VOR-900 — приёмник всенаправленного/маркерного радиомаяка (VOR/MKR) — представляет собой твердотельный, управляемый микропроцессором приёмник сигнала всенаправленного радиомаяка (VOR) и приёмник сигналов маркерного радиомаяка (MKR). Он объединяет в себе функции 160-канального приёмника VOR в диапазоне 108-117.9 МГц с шагом изменения частоты в 50 кГц и одноканального 75 МГц приёмника маркерного маяка. Настройка приёмника VOR/MKR осуществляется либо через системы самолётовождения FMS (основное средство настройки) или двумя пультами управления радиосредствами RMP (резервное средство настройки).

    Приёмник VOR-900 имеет две раздельные функции. Первая из них заключается в приёме, декодировании и обработке информации пеленга из принимаемого сигнала всенаправленного радиомаяка. Вторая заключается в приёме, декодировании и обработке принимаемых сигналов радиомаяка.

    Функция всенаправленного радиомаяка обеспечивает оцифрованную информацию пеленга, визуальную и акустическую информацию по идентификации наземной станции.

    Функция радиомаркера обеспечивает визуальную и звуковую идентификацию при нахождении над передатчиком радиомаркера путём индикации в кабине экипажа трёх случаев: дальний, средний, ближний, сопровождаемых сигналами одного из трёх слышимых тонов: 400 Гц, 1300 Гц, 3000 Гц.

    Компоненты системы

    Система VOR/MKR включает в себя следующее оборудование и соответствующие аппаратные средства:

    • два приёмника;
    • одну (двойную) антенну всенаправленного радиомаяка;
    • одну (двойную) маркерную антенну;
    • один делитель марерного радиомаяка.

    Принцип работы

    Настройка приёмников VOR/MKR осуществляется через блоки FMS или панели RMP по шине ARINC 429. Приёмник VOR настраивается на 160 каналов в диапазоне 108-117,95 МГц, в диапазоне 108-112 МГц используются каналы с частотой, имеющей чётное число десятых мегагерца. Маркерный приёмник работает на частоте 75 МГц.

    Информация от маркерных маяков обычно используется при заходе на посадку с высокой точностью, но может также использоваться на отрезках маршрута при получении её от «путевых маркеров».

    Информация VOR может использоваться на всех этапах полёта, где расположены и должным образом введены в эксплуатацию наземные маяки VOR.

    Поскольку приёмник VOR-900 отвечает за выполнение двух отдельных функций навигации самолёта, две независимые антенны используются для обеспечения входных сигналов для отдельных систем приёмника. Приёмник VOR принимает входящий сигнал с антенны VOR. Этот приёмник обнаруживает, фильтрует и усиливает пеленг и аудиоинформацию перед дальнейшей обработкой. Индикация TO/FROM также выводится из принятого сигнала. Система электронной индикации (CDS) отображает отклонение от курса VIUD (5 градусов на точку) как функцию установки полосы курса.

    Маркерный приёмник принимает сигнал с частотой 75 МГц. когда воздушное судно пролетает над местом расположения маркерного передатчика. Обнаруженный сигнал фильтруется и усиливается перед передачей на детектор. Аудиосигнал, выводимый из несущей частоты 75 МГц, подаётся на систему из трёх фильтров, каждый из которых настроен на пропускание одной частоты.

    Частотами фильтров являются: 400 Гц, 1300 Гц и 3000 Гц, модулированные азбукой Морзе. Эти звуковые тона соответствуют дальнему, среднему и ближнему маркерам на пути захода на посадку.

    Звуковой сигнал от фильтра через усилитель звуковой частоты поступает на системы распределения звуковых сигналов воздушного судна. Сигнал также включается в выходное слово приёмника VOR, которое передаётся по шине ARINC 429 для индикации на CDS.

    Отображение символики «O», «M», «I» представляет, соответственно, прохождение внешнего, среднего и ближнего маркеров при заходе на посадку по приборам. В случае переполнения путевых маяков и веерных радиомаяков, принимаемый и демодулируемый звуковой сигнал с частотой 3000 Гц включает символику «I».

    Антенна VOR оборудована двумя коаксиальными антенными портами С-типа. Оба приёмника VOR/MKR присоединены, таким образом, непосредственно к антенне и не нуждаются в распределителе сигналов. Антенна VOR расположена в киле под обтекателем.

    Маркерная антенна разработана с коаксиальным антенным портом. Для формирования сигнала на два приёмника VOR/MKR установлен также делитель сигналов от маркерной антенны.

    Управление системой

    Настройка приёмников VOR/MKR осуществляется через блоки FMS (основная настройка) или панели RMP (резервная настройка).

    Выбор основывается на контрольной сумме опознавания (SDI) стандарта ARINC 429. Каждая FMS передаёт данные настройки на приёмник VOR1 c SDI = 01, а на приёмник VOR2 с SDI = 10. Каждый приёмник принимает данные настройки с правильной величиной SDI.

    Данные VOR отображаются на дисплеях в кабине экипажа при выборе средств VOR в качестве навигационного источника.

    Информация от марекров (I, M, O) автоматически принимается и обрабатывается, когда воздушное судно пролетает над радиомаркерами или путевыми маркерами. Эти устройства осуществляю передачу на фиксированной частоте 75 МГц, поэтому никакой настройки в кабине экипажа не требуется.

    Приёмник VOR-900

    Приёмник VOR-900 — приёмник всенаправленного/маркерного радиомаяка (VOR/MKR), представляет собой твердотельный, управляемый микропроцессором приёмник сигнала всенаправленного радиомаяка (VOR) и приёмник сигналов маркерного радиомаяка (MKR). Он объединяет в себе функции 160-канального приёмника VOR в диапазоне 108-117.9 МГц с шагом изменения частоты в 50 кГц и одноканального 75 МГц приёмника маркерного маяка.

    Функциональная структура

    Приёмник VOR-900 обеспечивате передачу информации пеленга и маркера в систему самолётовождения и систему электронной индикации в кабине экипажа. Информация пеленга извлекается из амплитудно-модулированных сигналов в диапазоне 108-117,5 МГц. Электрическими блоками, демодулирующими сигналы и обрабатывающими информацию пеленга, являются процессор А2, блок питания А3, приёмник VOR А4 и маркерный приёмник А5.

    Задний межкомпонентный соединитель А1

    Задний межкомпонентный соединитель А1 обеспечивает всю соединительную проводку и разъёмы, наличие которых необходимо между ним и процессором А2. Также он содержит фильтры электромагнитных полей высокой интенсивности (HIRF) и обеспечивает заземление, изолированное от радиозаземления.

    Процессор А2

    Процессор А2 на базе микропроцессора оцифровывает выходные сигналы приёмника VOR А4 для восстановления фазовой информации сигнала VOR. Процессор А2 состоит из процессора сигнала, системного процессора, оперативных и постоянных запоминающих устройств, аналого-цифровых преобразователей, главной цепи сброса и буферов.

    Блок питания А3

    Блок питания принимает первичное питание с напряжением 115В 400 Гц переменного тока. На выходе блока питания формируются вторичные напряжения на уровне +12В, -12В, +5В, -5В.

    Приёмник VOR А4

    Приёмник VOR Ф4 принимает и демодулирует модулированный сигнал маяка VOR. Приёмника A4 состоит из каскада радиочастоты/промежуточной частоты, детектора огибающей и каскада автоматической регулировки усиления.

    Маркерный приёмник А5

    Маркерный приёмник А5 включает в себя сетевой фильтр, каскады формирования радиосигналов выходной и промежуточной частоты, детектора амплитудной модуляции и усилителя с истемой автоматической регулировки усиления. Маркерный приёмник усиливает сигнал, выделяет звуковую составляющую, и выдаёт результат в цепь автоматической регулировки усиления.

    Материнская плата А6

    Материнская плата А6 обеспечивает межкомпонентную проводку и монтаж электрических узлов А2, А3, А4, А5.

    Процессор технического обслуживания А7

    Процессор технического обслуживания А7 контролирует и сохраняет в памяти сообщения об отказах из процессора А2. Процессор обслуживания состоит из микропроцессора, постоянного и оперативного запоминающего устройства, главной цепи сброса и буферов.

    Механическая конструкция

    Приёмник выполнен по стандарту ARINC 600в корпусе с размерами 3 MCU. Разъём также выполнен по ARINC 600. Специальный тестовый соединитель расположен в задней части блока, что облегчает тестирование.

    Приёмник состоит из алюминиевого корпуса, обеспечивающего крепление основных узлов: заднего межкомпонентного соединителя А1, процессора А2, блока питания А3, приёмника VOR А4, маркерного приёмника А5, материнской платы А6 и процессора технического обслуживания А7.

    Конструкция корпуса сводит к минимуму число и длину швов. Конструкция герметична и экранирована от влияния помех. Цени с низким сопротивлением обеспечиваются широкими перекрытиями и минимальными зазорами. Пружинная металлическая прокладка по периметру обеспечивает в закрытом состоянии плотную изоляцию от влияния РЧ помех.

    Каждый модуль внутри приёмника VOR-900 закреплён на раме при помощи винтов для обеспечения хорошего электрического заземления, сведения к минимуму электрических помех и надёжного удержания модуля для предотвращения вибрации. Каждый модуль имеет металлических кожух для лучшей защиты от внешних радиопомех. Боковые кожухи закрепляются невыпадающими винтами. После ослабления винтов, боковые кожухи могут быть откинуты на петлях, закреплённых в задней части блока. Процессор технического обслуживания монтируется с наружной стороны левого кожуха. Ленточный кабель присоединяет его к процессору прибора. Процессор А2 и блок питания А3 смонтированы в левой части правой металлической панели, которая и образует центр рамы. Материнская плата смонтирована между процессором прибора и блоком питания, и центральной панелью шасси. Материнская плата обеспечивает электрические соединения между компонентами с противоположный сторон шасси. Маркерный приёмник и приёмник VOR смонтрированы с правой стороны центральной панели шасси. Лентончные кабели используются для присоеднинения компонентов, смонтированных на центральной панели рамы, к межкомпонентному соединителю А1, смонтированному в задней части рамы.

    Межкомпонентный соединитель А1 располагается в задней секции шасси. Кожух в задней части шасси может быть снят без необходимости снятия боковых кожухов. Соединительный разъём ARINC 600 смонтирован непосредственно на плате межкомпонентного соединителя. Штыри соединительного разъёма вставляются спереди и проходят через соединительный разъём непосредственно в плату мужкомпонентного соединителя. Прокладка из металлической оплётки окружает задний соединительный разъём для защиты от излучаемых электромагнитных помех.

    Маленькая плата, содержащая светодиодные индикаторы и выключатель тестирования, смонтирована внутри передней панели приёмника VOR-900.

    Технические характеристики

    Общие характеристики:

    • диапазон частот приёмника VOR: 108,00 — 117,95 МГц с шагом изменения частоты 50 кГц;
    • частота маркерного приёмника: 75 МГц, фиксированная настройка;
    • соответствует требованиям приложения 10 ИКАО по устойчивости к радиоизлучению частотной модуляции;
    • соответствует требованиям по воздействию электромагнитных полей высокой интенсивности (HIRF) «существенного» уровня.
    • соответствует требованиям DO-178A/DO-160C$
    • повышенная устойчивость к перерывам в электрическом питании;
    • улучшенный интерфейс оборудования встроенного контроля.

    Габариты:

    • Ширина: 95 мм
    • Высота: 195 мм
    • Длина: 320 мм

    Масса: 9 фунтов (4, 08 кк)
    Температура:

    • -55 — 70 °C рабочая
    • -65 — 85 °C температура хранения

    Высота: 50 000 фт.

    Чувствительность:
    акустическая — -99 дБм при 6 дБ (сигнал + шум)/шум.
    навигационная — -99 дБм

    Избирательность:
    Приёмник VOR: ± 15кГц при 6 дБ, ±33б0 кГц при 60дБ.
    Маркерный приёмник: 10кГц при 2 дБ, ±50кГц при 60дБ.

    Точность пеленга: 0,2 градуса, стандартное отклонение 0,1 градуса

    Антенна VOR

    Антенна приёмника VOR разработана для самолётов семейства RRJ и рассчината на работу в диапазоне частот 108-118 МГц.

    Антенна даёт возможность одновременной работы двух приёмников посредством двух антенных коаксиальных соединителей С-типа и внутреннего гибридного соединителя.

    Металлическая конструкция заземлена по постоянному току, что обеспечивает эффективную молниезащиту и дисперсию зарядов статического электричества. Заземление антенны обеспечивается посредством монтажных винтов, завёрнутых на неокрашенных металлических контактах.

    Технические характеристики

    Масса: ≤1,25 кг

    Габариты:

    • Длина — 54 см
    • Ширина — 12 см
    • Высота — 15 см

    Электрические характеристики:

    • Диапазон частот — 108-118 МГц
    • Номинальное полное сопротивление — 50 Ом
    • Поляризация — горизонтальная
    • Диаграмма направленности — в соответствии с DO 153A
    • Развязка между портами — ≥10 дБ

    Средняя наработка на отказ: ≥ 40000 рабочих часов.

    Маркерная антенна

    Маркерная антенна представляет собой низкопрофильную антенну, разработанную для приёма сигналов маркерного маяка при номинальной частоте 75 МГц.

    Антенна имеет горизонтальную поляризацию и излучающие элементы являются предварительно формованными и герметизированными внутри антенны как единый узел, не имеющий пустот.

    Технические характеристики

    Масса: ≤0,25 кг
    Диапазон температур: -75 — +180 °C (рабочий), до +220 °C (не вызывающий повреждения).

    Проводящая герметизирующая прокладка из алюминиевой фольги, устанавливаемая в сухом состоянии, устанавливается с маркерной антенной. Давление, оказываемое в процессе установки, придаёт прокладке необходимую форму, соответствующую пространству между двумя сопрягаемыми поверхностями, что обеспечивает постоянное распределение проводящих контактов прокладки.

    Электрические характеристики:

    • Диапазон частот — 75 ± 0,25 МГц
    • Поляризация — горизонтальная
    • Волновое сопротивление — 50 Ом
    • Соединительный разъём — BNC, внутренняя резьба

    Делитель маркерного радиомаяка

    Делитель маркерного радиомаяка разработан для использования с маркерами антенны на частоте 75 МГц. Данное устройство разработано для обеспечения подачи входных сигналов в два маркерных приёмника от одной антенны.

    Структура взаимодействия приёмника VOR/MKR с блоками и системами

    Система VOR/MKR имеет интерфейсную связь со следующими системами.

Понравилась статья? Поделитесь ей