Контакты

Разбираемся в принципах работы электродвигателей: преимущества и недостатки разных видов. Разбираемся в принципах работы электродвигателей: преимущества и недостатки разных видов Лабораторная работа изучение работы электродвигателя постоянного тока

тока»

Место урока в рабочей программе: 55 урок, один из уроков темы «Электромагнитные явления».

Цель урока: Объяснить устройство и принцип действия электрического двигателя.

Задачи:

изучить электрический двигатель, с использованием практического метода – выполнения лабораторной работы.

научиться применять полученные знания в нестандартных ситуациях для решения задач;

для развития мышления учащихся продолжить отработку умственных операций анализа, сравнения и синтеза.

продолжить формирование познавательного интереса учащихся.

Методическая цель: применение здоровьесберегающих технологий на уроках физики.

Формы работы и виды деятельности на уроке: проверка знаний с учётом индивидуальных особенностей учащихся; лабораторная работа проводится в микрогруппах(парами), актуализация знаний учащихся в игровой форме; объяснение нового материала в форме беседы с демонстрационным экспериментом, целеполагание и рефлексия.

Ход урока

1)Проверка домашнего задания.

Самостоятельная работа (разноуровневая) проводится в течение первых 7 минут урока.

1 уровень .

2 уровень.

3 уровень.

2). Изучение нового материала. (15 минут).

Учитель сообщает тему урока, учащиеся формируют цель.

Актуализация знаний. Игра «да» и «нет»

Учитель читает фразу, если ученики согласны с утверждением они встают, если нет – сидят.


  • Магнитное поле образуется постоянными магнитами или электрическим током.

  • Магнитных зарядов в природе нет.

  • Южный полюс магнитной стрелки указывает южный географический полюс Земли.

  • Электромагнитом называется катушка с железным сердечником внутри.

  • Силовые линии магнитного поля направлены слева направо.

  • Линии, вдоль которых в магнитном поле устанавливаются магнитные стрелки называются магнитными линиями.

План изложения.


  1. Действие магнитного поля на проводник с током.

  2. Зависимость направления движения проводника от направления тока в нём и от расположения полюсов магнита.

  3. Устройство и действие простейшего коллекторного электродвигателя.
Демонстрации.

  1. Движение проводника и рамки с током в магнитном поле.

  2. Устройство и принцип действия электродвигателя постоянного тока.
3.Лабораторная работа № 9. (работа в микрогруппах- парами).

Инструктаж по технике безопасности.

Работа выполняется по описанию в учебнике стр.176.

4.Заключительный этап урока.

Задача. Два электронных пучка отталкиваются, а два параллельных провода, по которым течёт ток в одном направлении притягиваются. Почему? Можно ли создать условия, при которых эти проводники тоже будут отталкиваться?

Рефлексия.

Что нового узнали? Нужны ли эти знания в повседневной жизни?


Вопросы:

От чего зависит скорость вращения ротора в электродвигателе?

Что называется электрическим двигателем?

П. 61, составить кроссворд по теме «электромагнитные явления.

Приложение.

1 уровень .

1.Как взаимодействуют разноимённые и одноимённые полюсы магнитов?

2. Можно ли разрезать магнит так, чтобы один из полученных магнитов имел только северный полюс, а другой – только южный?

2 уровень.

Почему корпус компаса делают из меди, алюминия, пластмассы и других материалов, но не из железа?

Почему стальные рельсы и полосы, лежащие на складе, через некоторое время оказываются намагниченными?

3 уровень.

1.Нарисуйте магнитное поле подковообразного магнита и укажите направление силовых линий.

2. К южному полюсу магнита притянулись две булавки. Почему их свободные концы отталкиваются?

1 уровень .

1.Как взаимодействуют разноимённые и одноимённые полюсы магнитов?

2. Можно ли разрезать магнит так, чтобы один из полученных магнитов имел только северный полюс, а другой – только южный?

2 уровень.

Почему корпус компаса делают из меди, алюминия, пластмассы и других материалов, но не из железа?

Почему стальные рельсы и полосы, лежащие на складе, через некоторое время оказываются намагниченными?

3 уровень.

1.Нарисуйте магнитное поле подковообразного магнита и укажите направление силовых линий.

2. К южному полюсу магнита притянулись две булавки. Почему их свободные концы отталкиваются?

МКОУ «Аллакская СОШ»

Открытый урок физики в 8 классе по теме « Действие магнитного поля на проводник с током. Электрический двигатель. Лабораторная работа № 9 «Изучение электрического двигателя постоянного тока».

Подготовила и провела: учитель первой категории Таранушенко Елизавета Александровна.

Электродвигатели – это устройства, в которых электрическая энергия превращается в механическую. В основе принципа их действия лежит явление электромагнитной индукции.

Однако способы взаимодействия магнитных полей, заставляющих вращаться ротор двигателя, существенно различаются в зависимости от типа питающего напряжения – переменного или постоянного.

В основе принципа работы электродвигателя постоянного тока лежит эффект отталкивания одноименных полюсов постоянных магнитов и притягивания разноименных. Приоритет ее изобретения принадлежит русскому инженеру Б. С. Якоби. Первая промышленная модель двигателя постоянного тока была создана в 1838 году. С тех пор его конструкция не претерпела кардинальных изменений.

В двигателях постоянного тока небольшой мощности один из магнитов является физически существующим. Он закреплен непосредственно на корпусе машины. Второй создается в обмотке якоря после подключения к ней источника постоянного тока. Для этого используется специальное устройство – коллекторно-щеточный узел. Сам коллектор – это токопроводящее кольцо, закрепленное на валу двигателя. К нему подключены концы обмотки якоря.

Чтобы возник вращающий момент, необходимо непрерывно менять местами полюса постоянного магнита якоря. Происходить это должно в момент пересечения полюсом так называемой магнитной нейтрали. Конструктивно такая задача решается разделением кольца коллектора на секторы, разделенные диэлектрическими пластинами. Концы обмоток якоря присоединяются к ним поочередно.

Чтобы соединить коллектор с питающей сетью используются так называемые щетки – графитовые стержни, имеющие высокую электрическую проводимость и малый коэффициент трения скольжения.

Обмотки якоря не подключены к питающей сети, а посредством коллекторно-щеточного узла соединены с пусковым реостатом. Процесс включения такого двигателя состоит из соединения с питающей сетью и постепенного уменьшения до нуля активного сопротивления в цепи якоря. Электромотор включается плавно и без перегрузок.

Особенности использования асинхронных двигателей в однофазной цепи

Несмотря на то, что вращающееся магнитное поле статора проще всего получить от трехфазного напряжения, принцип действия асинхронного электродвигателя позволяет ему работать и от однофазной, бытовой сети, если в их конструкцию будут внесены некоторые изменения.

Для этого на статоре должно быть две обмотки, одна из которой является «пусковой». Ток в ней сдвигается по фазе на 90° за счет включения в цепь реактивной нагрузки. Чаще всего для этого

Практически полная синхронность магнитных полей позволяет двигателю набирать обороты даже при значительных нагрузках на валу, что и требуется для работы дрелей, перфораторов, пылесосов, «болгарок» или полотерных машин.

Если в питающую цепь такого двигателя включен регулируемый , то частоту его вращения можно плавно менять. А вот направление, при питании от цепи переменного тока, изменить не удастся никогда.

Такие электромоторы способны развивать очень высокие обороты, компактны и имеют больший вращающий момент. Однако наличие коллекторно-щеточного узла снижает их моторесурс – графитовые щетки достаточно быстро истираются на высоких оборотах, особенно если коллектор имеет механические повреждения.

Электродвигатели имеют самый большой КПД (более 80 %) из всех устройств, созданных человеком. Их изобретение в конце XIX века вполне можно считать качественным цивилизационным скачком, ведь без них невозможно представить жизнь современного общества, основанного на высоких технологиях, а чего-либо более эффективного пока еще не придумано.

Синхронный принцип работы электродвигателя на видео

Лабораторные работы → номер 10

Изучение электрического двигателя постоянного тока (на модели).

Цель работы: Ознакомиться с основными деталями электрического двигателя постоянного тока на модели этого двигателя.

Это, пожалуй, самая несложная работа за курс 8 класса. Нужно только подключить модель двигателя к источнику тока, посмотреть, как она работает, и запомнить названия основных частей электродвигателя (якорь, индуктор, щетки, полукольца, обмотка, вал).

Предложенный вам учителем электродвигатель может быть похож на изображенный на рисунке, а может иметь другой вид, поскольку вариантов школьных электрических двигателей существует много. Принципиального значения это не имеет, так как учитель наверняка подробно расскажет и покажет, как обращаться с моделью.

Перечислим основные причины того, что правильно подключенный электродвигатель не работает. Обрыв цепи, отсутствие контакта щеток с полукольцами, повреждение обмотки якоря. Если в первых двух случаях вы вполне способны справится самостоятельно, в случае обрыва обмотки нужно обратиться к преподавателю. Перед включением двигателя следует убедиться, что его якорь может свободно вращаться и ему ничего не мешает, иначе при включении электродвигатель будет издавать характерное гудение, но вращаться не будет.

Лабораторная работа № 9

Тема. Изучение электродвигателя постоянного тока.

Цель работы: изучить устройство и принцип работы электродвигателя.

Оборудование: модель электродвигателя, источник тока, реостат, ключ, амперметр, соединительные провода, рисунки, презентация.

ЗАДАНИЯ:

1 . Изучите устройство и принцип работы электродвигателя, используя презентацию, рисунки и модель.

2 . Присоедините электродвигатель к источнику тока и наблюдайте за его работой. Если двигатель не работает, установите причину, постарайтесь устранить неполадку.

3 . Укажите два главных элемента в устройстве электродвигателя.

4 . На каком физическом явлении основано действие электродвигателя?

5 . Измените направление вращения якоря. Запишите, что для этого нужно сделать.

6. Соберите электрическую цепь, соединив последовательно электродвигатель, реостат, источник тока, амперметр и ключ. Измените силу тока и наблюдайте за работой электродвигателя. Меняется ли скорость вращения якоря? Запишите вывод о зависимости силы, действующей со стороны магнитного поля на катушку, от силы тока в катушке.

7 . Электродвигатели могут быть любой мощности, т.к.:

А) можно менять силу тока в обмотке якоря;

Б) можно менять магнитное поле индуктора.

Укажите правильный ответ:

1) верно только А; 2) верно только Б; 3) верно и А, и Б; 4) неверно и А, и Б.

8 . Перечислите преимущества электродвигателя по сравнению с тепловым двигателем.

Любой электрический двигатель предназначен для совершения механической работы за счет расхода приложенной к нему электроэнергии, которая преобразуется, как правило, во вращательное движение. Хотя в технике встречаются модели, которые сразу создают поступательное движение рабочего органа. Их называют линейными двигателями.

В промышленных установках электромоторы приводят в действие различные станки и механические устройства, участвующие в технологическом производственном процессе.

Внутри бытовых приборов электродвигатели работают в стиральных машинах, пылесосах, компьютерах, фенах, детских игрушках, часах и многих других устройствах.

Основные физические процессы и принцип действия

На движущиеся внутри электрические заряды, которые называют электрическим током, всегда действует механическая сила, стремящаяся отклонить их направление в плоскости, расположенной перпендикулярно ориентации магнитных силовых линий. Когда электрический ток проходит по металлическому проводнику или выполненной из него катушке, то эта сила стремится подвинуть/повернуть каждый проводник с током и всю обмотку в целом.

На картинке ниже показана металлическая рамка, по которой течет ток. Приложенное к ней магнитное поле создает для каждой ветви рамки силу F, создающую вращательное движение.


Это свойство взаимодействия электрической и магнитной энергии на основе создания электродвижущей силы в замкнутом токопроводящем контуре положено в работу любого электродвигателя. В его конструкцию входят:

    обмотка, по которой протекает электрический ток. Ее располагают на специальном сердечнике-якоре и закрепляют в подшипниках вращения для уменьшения противодействия сил трения. Эту конструкцию называют ротором;

    статор, создающий магнитное поле, которое своими силовыми линиями пронизывает проходящие по виткам обмотки ротора электрические заряды;

    корпус для размещения статора. Внутри корпуса сделаны специальные посадочные гнезда, внутри которых вмонтированы внешние обоймы подшипников ротора.

Упрощенно конструкцию наиболее простого электродвигателя можно представить картинкой следующего вида.


При вращении ротора создается крутящий момент, мощность которого зависит от общей конструкции устройства, величины приложенной электрической энергии, ее потерь при преобразованиях.

Величина максимально возможной мощности крутящего момента двигателя всегда меньше приложенной к нему электрической энергии. Она характеризуется величиной коэффициента полезного действия.

Виды электродвигателей

По виду протекающего по обмоткам тока их подразделяют на двигатели постоянного или переменного тока. Каждая из этих двух групп имеет большое количество модификаций, использующих различные технологические процессы.

Электродвигатели постоянного тока

У них магнитное поле статора создается стационарно закрепленными либо специальными электромагнитами с обмотками возбуждения. Обмотка якоря жестко вмонтирована в вал, который закреплен в подшипниках и может свободно вращаться вокруг собственной оси.

Принципиальное устройство такого двигателя показано на рисунке.


На сердечнике якоря из ферромагнитных материалов расположена обмотка, состоящая из двух последовательно соединенных частей, которые одним концом подключены к токопроводящим коллекторным пластинам, а другим скоммутированы между собой. Две щетки из графита расположены на диаметрально противоположных концах якоря и прижимаются к контактным площадкам коллекторных пластин.

На нижнюю щетку рисунка подводится положительный потенциал постоянного источника тока, а на верхнюю - отрицательный. Направление протекающего по обмотке тока показано пунктирной красной стрелкой.

Ток вызывает в нижней левой части якоря магнитное поле северного полюса, а в правой верхней - южного (правило буравчика). Это приводит к отталкиванию полюсов ротора от одноименных стационарных и притяжению к разноименным полюсам на статоре. В результате приложенной силы возникает вращательное движение, направление которого указывает коричневая стрелка.

При дальнейшем вращении якоря по инерции полюса переходят на другие коллекторные пластины. Направление тока в них изменяется на противоположное. Ротор продолжает дальнейшее вращение.

Простая конструкция подобного коллекторного устройства приводит к большим потерям электрической энергии. Подобные двигатели работают в приборах простой конструкции или игрушках для детей.

Электродвигатели постоянного тока, участвующие в производственном процессе, имеют более сложную конструкцию:

    обмотка секционирована не на две, а на большее количество частей;

    каждая секция обмотки смонтирована на своем полюсе;

    коллекторное устройство выполнено определенным количеством контактных площадок по числу секций обмоток.

В результате этого создается плавное подключение каждого полюса через свои контактные пластины к щеткам и источнику тока, снижаются потери электроэнергии.

Устройство подобного якоря показано на картинке.


У электрических двигателей постоянного тока можно реверсировать направление вращения ротора. Для этого достаточно изменить движение тока в обмотке на противоположное сменой полярности на источнике.

Электродвигатели переменного тока

Они отличаются от предыдущих конструкций тем, что электрический ток, протекающий в их обмотке, описывается по , периодически изменяющему свое направление (знак). Для их питания напряжение подается от генераторов со знакопеременной величиной.

Статор таких двигателей выполняется магнитопроводом. Его делают из ферромагнитных пластин с пазами, в которые помещают витки обмотки с конфигурацией рамки (катушки).


Синхронные электродвигатели

На картинке ниже показан принцип работы однофазного двигателя переменного тока с синхронным вращением электромагнитных полей ротора и статора.


В пазах статорного магнитопровода по диаметрально противоположным концам размещены проводники обмотки, схематично показанные в виде рамки, по которой протекает переменный ток.

Рассмотрим случай для момента времени, соответствующего прохождению положительной части его полуволны.

В обоймах подшипника свободно вращается ротор с вмонтированным постоянным магнитом, у которого ярко выражены северный «N рот» и южный «S рот» полюса. При протекании положительной полуволны тока по обмотке статора в ней создается магнитное поле с полюсами «S ст» и «N ст».

Между магнитными полями ротора и статора возникают силы взаимодействия (одноименные полюса отталкиваются, а разноименные - притягиваются), которые стремятся повернуть якорь электродвигателя из произвольного положения в окончательное, когда осуществляется максимально близкое расположение противоположных полюсов относительно друг друга.

Если рассматривать этот же случай, но для момента времени, когда по рамочному проводнику протекает обратная - отрицательная полуволна тока, то вращение якоря будет происходить в противоположную сторону.

Для придания непрерывного движения ротору в статоре делают не одну обмотку-рамку, а определенное их количество с таким учетом, чтобы каждая их них питалась от отдельного источника тока.

Принцип работы трехфазного двигателя переменного тока с синхронным вращением электромагнитных полей ротора и статора показан на следующей картинке.


В этой конструкции внутри магнитопровода статора смонтированы три обмотки А, В и С, смещенные на углы 120 градусов между собой. Обмотка А выделена желтым цветом, В - зеленым, а С - красным. Каждая обмотка выполнена такими же рамками, как и в предыдущем случае.

На картинке для каждого случая ток проходит только по одной обмотке в прямом или обратном направлении, которое показано значками «+» и «-».

При прохождении положительной полуволны по фазе А в прямом направлении ось поля ротора занимает горизонтальное положение потому, что магнитные полюса статора формируются в этой плоскости и притягивают подвижный якорь. Разноименные полюса ротора стремятся приблизиться к полюсам статора.

Когда положительная полуволна пойдет по фазе С, то якорь повернется на 60 градусов по ходу часовой стрелки. После подачи тока в фазу В произойдет аналогичный поворот якоря. Каждое очередное протекание тока в очередной фазе следующей обмотки будет вращать ротор.

Если к каждой обмотке подвести сдвинутое по углу 120 градусов напряжение трехфазной сети, то в них будут циркулировать переменные токи, которые раскрутят якорь и создадут его синхронное вращение с подведенным электромагнитным полем.


Эта же механическая конструкция успешно применяется в трехфазном шаговом двигателе . Только в каждую обмотку с помощью управления подаются и снимаются импульсы постоянного тока по описанному выше алгоритму.


Их запуск начинает вращательное движение, а прекращение в определенный момент времени обеспечивает дозированный поворот вала и остановку на запрограммированный угол для выполнения определенных технологических операций.

В обеих описанных трехфазных системах возможно изменение направления вращения якоря. Для этого надо просто поменять чередование фаз «А»-«В»-«С» на другое, например, «А»-«С»-«В».

Скорость вращения ротора регулируется продолжительностью периода Т. Его сокращение приводит к ускорению вращения. Величина амплитуды тока в фазе зависит от внутреннего сопротивления обмотки и значения приложенного к ней напряжения. Она определяет величину крутящего момента и мощности электрического двигателя.

Асинхронные электродвигатели

Эти конструкции двигателей имеют такой же статорный магнитопровод с обмотками, как и в ранее рассмотренных однофазных и трехфазных моделях. Они получили свое название из-за несинхронного вращения электромагнитных полей якоря и статора. Сделано это за счет усовершенствования конфигурации ротора.


Его сердечник набран из пластин электротехнических марок стали с пазами. В них вмонтированы алюминиевые либо медные тоководы, которые по концам якоря замкнуты токопроводящими кольцами.

Когда к обмоткам статора подводится напряжение, то в обмотке ротора электродвижущей силой наводится электрический ток и создается магнитное поле якоря. При взаимодействии этих электромагнитных полей начинается вращение вала двигателя.

У этой конструкции движение ротора возможно только после того, как возникло вращающееся электромагнитное поле в статоре и оно продолжается в несинхронном режиме работы с ним.

Асинхронные двигатели проще в конструктивном исполнении. Поэтому они дешевле и массово применяются в промышленных установках и бытовой домашней технике.

Линейные электродвигатели

Многие рабочие органы промышленных механизмов выполняют возвратно-поступательное или поступательное движение в одной плоскости, необходимое для работы металлообрабатывающих станков, транспортных средств, ударов молота при забивании свай …

Перемещение такого рабочего органа с помощью редукторов, шариковинтовых, ременных передач и подобных механических устройств от вращательного электродвигателя усложняет конструкцию. Современное техническое решение этой проблемы - работа линейного электрического двигателя.


У него статор и ротор вытянуты в виде полос, а не свернуты кольцами, как у вращательных электродвигателей.

Принцип работы заключается в придании возвратно-поступательного линейного перемещения бегуну-ротору за счет передачи электромагнитной энергии от неподвижного статора с незамкнутым магнитопроводом определенной длины. Внутри него поочередным включением тока создается бегущее магнитное поле.

Оно воздействует на обмотку якоря с коллектором. Возникающие в таком двигателе силы перемещают ротор только в линейном направлении по направляющим элементам.

Линейные двигатели конструируются для работы на постоянном или переменном токе, могут работать в синхронном либо асинхронном режиме.

Недостатками линейных двигателей являются:

    сложность технологии;

    высокая стоимость;

    низкие энергетические показатели.

Понравилась статья? Поделитесь ей