Контакты

Представление чисел в двоичном коде. Двоичная система счисления Двоичные числа в десятичной записи

Эта система имеет основание S = 10, но каждая цифра изображается четырехразрядным двоичным числом, называемым тетрадой. Обычно данная система счисления используется в ЭВМ при вводе и выводе информации. Однако в некоторых типах ЭВМ в АЛУ имеются специальные блоки десятичной арифметики, выполняющие операции над числами в двоично-десятичном коде. Это позволяет в ряде случаев существенно повышать производительность ЭВМ.

Например, в автоматизированной системе обработки данных чисел много, а вычислений мало. В этом случае операции, связанные с переводом чисел из одной системы в другую, существенно превысили бы время выполнения операций по обработке информации.

Перевод чисел из десятичной системы в двоично-десятичную весьма прост и заключается в замене каждой цифры двоичной тетрадой.

Пример.

Записать десятичное число 572.38 (10) в двоично-десятичной системе счисления.

Обратный перевод также прост: необходимо двоично-десятичное число разбить на тетрады от точки влево (для целой части) и вправо (для дробной), дописать необходимое число незначащих нулей, а затем каждую тетраду записать в виде десятичной цифры.

Пример.

Записать двоично-десятичное число 10010.010101 (2-10) в десятичной системе счисления.

Перевод чисел из двоично-десятичной в двоичную систему осуществляется по общим правилам, описанным выше.

2.3. Восьмеричная система счисления

В восьмеричной системе счисления употребляются всего восемь цифр, т.е. эта система счисления имеет основание S = 8. В общем виде восьмеричное число выглядит следующим образом:

где
.

Восьмеричная система счисления не нужна ЭВМ в отличие от двоичной системы. Она удобна как компактная форма записи чисел и используется программистами (например, в текстах программ для более краткой и удобной записи двоичных кодов команд, адресов и операндов). В восьмеричной системе счисления вес каждого разряда кратен восьми или одной восьмой, поэтому восьмиразрядное двоичное число позволяет выразить десятичные величины в пределах 0-255, а восьмеричное охватывает диапазон 0-99999999 (для двоичной это составляет 27 разрядов).

Поскольку 8=2 3 , то каждый восьмеричный символ можно представить трехбитовым двоичным числом. Для перевода числа из двоичной системы счисления в восьмеричную необходимо разбить это число влево (для целой части) и вправо (для дробной) от точки (запятой) на группы по три разряда (триады) и представить каждую группу цифрой в восьмеричной системе счисления. Крайние неполные триады дополняются необходимым количеством незначащих нулей.

Пример.

Двоичное число 10101011111101 (2) записать в восьмеричной системе счисления.

Пример.

Двоичное число 1011.0101 (2) записать в восьмеричной системе счисления.

Перевод из восьмеричной системы счисления в двоичную осуществляется путем представления каждой цифры восьмеричного числа трехразрядным двоичным числом (триадой).

2.4. Шестнадцатеричная система счисления

Эта система счисления имеет основание S = 16. В общем виде шестнадцатеричное число выглядит следующим образом:

где
.

Шестнадцатеричная система счисления позволяет еще короче записывать многоразрядные двоичные числа и, кроме того, сокращать запись 4-разрядного двоичного числа, т.е. полубайта, поскольку 16=2 4 . Шестнадцатеричная система также применяется в текстах программ для более краткой и удобной записи двоичных чисел.

Для перевода числа из двоичной системы счисления в шестнадцатеричную необходимо разбить это число влево и вправо от точки на тетрады и представить каждую тетраду цифрой в шестнадцатеричной системе счисления.

Пример.

Двоичное число 10101011111101 (2) записать в шестнадцатеричной системе.

Пример.

Двоичное число 11101.01111 (2) записать в шестнадцатеричной системе.

Для перевода числа из шестнадцатеричной системы счисления в двоичную, необходимо, наоборот, каждую цифру этого числа заменить тетрадой.

В заключение следует отметить, что перевод из одной системы счисления в другую произвольных чисел можно осуществлять по общим правилам, описанным в разделе “Двоичная система счисления”. Однако на практике переводы чисел из де­сятичной системы в рассмотренные системы счисления и обратно осуществляются через двоичную систему счисления.

Кроме того, следует помнить, что шестнадцатеричные и восьмеричные числа – это только способ представления больших двоичных чисел, которыми фактически оперирует процессор. При этом шестнадцатеричная система оказывается предпочтительнее, поскольку в современных ЭВМ процессоры манипулируют словами длиной 4, 8, 16, 32 или 64 бита, т.е. длиной слов, кратной 4. В восьмеричной же системе счисления предпочтительны слова, кратные 3 битам, например слова длиной 12 бит (как в PDP-8 фирмы DEC).

В двоичной системе счисления используются всего две цифры 0 и 1. Другими словами, двойка является основанием двоичной системы счисления. (Аналогично у десятичной системы основание 10.)

Чтобы научиться понимать числа в двоичной системе счисления, сначала рассмотрим, как формируются числа в привычной для нас десятичной системе счисления.

В десятичной системе счисления мы располагаем десятью знаками-цифрами (от 0 до 9). Когда счет достигает 9, то вводится новый разряд (десятки), а единицы обнуляются и счет начинается снова. После 19 разряд десятков увеличивается на 1, а единицы снова обнуляются. И так далее. Когда десятки доходят до 9, то потом появляется третий разряд – сотни.

Двоичная система счисления аналогична десятичной за исключением того, что в формировании числа участвуют всего лишь две знака-цифры: 0 и 1. Как только разряд достигает своего предела (т.е. единицы), появляется новый разряд, а старый обнуляется.

Попробуем считать в двоичной системе:
0 – это ноль
1 – это один (и это предел разряда)
10 – это два
11 – это три (и это снова предел)
100 – это четыре
101 – пять
110 – шесть
111 – семь и т.д.

Перевод чисел из двоичной системы счисления в десятичную

Не трудно заметить, что в двоичной системе счисления длины чисел с увеличением значения растут быстрыми темпами. Как определить, что значит вот это: 10001001? Непривычный к такой форме записи чисел человеческий мозг обычно не может понять сколько это. Неплохо бы уметь переводить двоичные числа в десятичные.

В десятичной системе счисления любое число можно представить в форме суммы единиц, десяток, сотен и т.д. Например:

1476 = 1000 + 400 + 70 + 6

1476 = 1 * 10 3 + 4 * 10 2 + 7 * 10 1 + 6 * 10 0

Посмотрите на эту запись внимательно. Здесь цифры 1, 4, 7 и 6 - это набор цифр из которых состоит число 1476. Все эти цифры поочередно умножаются на десять возведенную в ту или иную степень. Десять – это основание десятичной системы счисления. Степень, в которую возводится десятка – это разряд цифры за минусом единицы.

Аналогично можно разложить и любое двоичное число. Только основание здесь будет 2:

10001001 = 1*2 7 + 0*2 6 + 0*2 5 + 0*2 4 + 1*2 3 + 0*2 2 + 0*2 1 + 1*2 0

1*2 7 + 0*2 6 + 0*2 5 + 0*2 4 + 1*2 3 + 0*2 2 + 0*2 1 + 1*2 0 = 128 + 0 + 0 + 0 + 8 + 0 + 0 + 1 = 137

Т.е. число 10001001 по основанию 2 равно числу 137 по основанию 10. Записать это можно так:

10001001 2 = 137 10

Почему двоичная система счисления так распространена?

Дело в том, что двоичная система счисления – это язык вычислительной техники. Каждая цифра должна быть как-то представлена на физическом носителе. Если это десятичная система, то придется создать такое устройство, которое может быть в десяти состояниях. Это сложно. Проще изготовить физический элемент, который может быть лишь в двух состояниях (например, есть ток или нет тока). Это одна из основных причин, почему двоичной системе счисления уделяется столько внимания.

Перевод десятичного числа в двоичное

Может потребоваться перевести десятичное число в двоичное. Один из способов – это деление на два и формирование двоичного числа из остатков. Например, нужно получить из числа 77 его двоичную запись:

77 / 2 = 38 (1 остаток)
38 / 2 = 19 (0 остаток)
19 / 2 = 9 (1 остаток)
9 / 2 = 4 (1 остаток)
4 / 2 = 2 (0 остаток)
2 / 2 = 1 (0 остаток)
1 / 2 = 0 (1 остаток)

Собираем остатки вместе, начиная с конца: 1001101. Это и есть число 77 в двоичном представлении. Проверим:

1001101 = 1*2 6 + 0*2 5 + 0*2 4 + 1*2 3 + 1*2 2 + 0*2 1 + 1*2 0 = 64 + 0 + 0 + 8 + 4 + 0 + 1 = 77

(Методическая разработка)

Задание: Преобразовать числа, выраженные в десятичной форме, в двоичную форму, затем произвести умножение.

Примечание: Правила умножения точно такие же, как и в десятичной системе счисления.

Умножить: 5 × 5 = 25

Преобразуем десятичное число 5 в двоичный код

5: 2 = 2 остаток 1 Полученный результат

2: 2 = 1 остаток 0 записываем в обратном

1: 2 = 0 остаток 1 порядке

Таким образом: 5 (10) = 101 (2)

Преобразуем десятичное число 25 в двоичный код

25: 2 = 12 остаток 1

12: 2 = 6 остаток 0 Полученный результат

6: 2 = 3 остаток 0 записываем в обратном

3: 2 = 1 остаток 1 порядке

1: 2 = 0 остаток 1

Таким образом: 11001 (2) = 25 (10)

Производим проверку:

Производим двоичное умножение

×
101
+
101

Правила умножения в двоичной системе точно такие же, как и в десятичной системе счисления.

1) 1 × 1, будет 1, записываем 1.

2) 1 × 0, будет 0, записываем 0.

3) 1 × 1, будет 1, записываем 1.

4) Записываем три нуля, причем первый ноль под вторым знаком (нулем).

5) Умножение 1 × 101 точно такое же, как и п.п. 1, 2, 3.

Производим операцию сложения.

6) Сносим и записываем 1.

7) 0 +0 будет ноль, записываем 0.

8) 1 + 1 будет 10, записываем ноль, а единицу переносим в старший разряд.

9) 0 + 0 + 1 будет 1, записываем 1

10) Сносим и записываем 1.

Задание 1: Выполнить умножение в двоичной форме

Задание: Преобразовать числа, выражение в десятичной форме, в двоичную форму, затем произвести деление.

Примечание: Правила деления точно такие – же, как и в десятичной системе счисления.

Если результат делится без остатка, записываем – 0, иначе (с остатком) – 1

Разделить: 10:2 = 5

Преобразуем десятичное число 10 в двоичный код:

10:2 = 5 остаток 0 5:2 = 2 остаток 1 2:2 = 1 остаток 0 1:2 = 0 остаток 1

Полученный результат

записываем в обратном

Таким образом: 1010 (2) = 10 (10)

Преобразуем десятичное 2 в двоичный код

2:2 = 1 остаток 0

1:2 = 0 остаток 1



Таким образом: 10 (2) = 2 (10)

Преобразуем десятичное 5 в двоичное код

5:2 = 2 остаток 1

2:2 = 1 остаток 0

1:2 = 0 остаток 1

Таким образом: 101 (2) = 5 (10)

Производим проверку:

1010 (2) = 0×2 0 + 1×2 1 + 0×2 2 + 1×2 3 = 0 +2+0+8 =10 (10)

10 (2) = 0×2 0 +1×2 1 = 0 +2 = 2 (10)

101 (2) = 1×2 0 +0×2 1 +1×2 2 = 1+ 0+4 = 5 (10)

Производим двоичное деление:

1010 (2) : 10 (2) = 101 (2)

1010 (2) 10
10

Правила деления в двоичной системе точно такие же, как и в десятичной.

1) 10 разделить на 10. Берём по 1, в результат записываем 1.

2) Сносим 1 (единицу), не хватает, занимаем 0 (ноль).

3) Берём по 1. Из 10 (десяти) вычесть 10 получается ноль, что и соответствует
действительности.

Задание 1: Выполнить деление в двоичной форме

1) 10010 (2) : 110 (2) =

11000 (2) : 110 (2) =

2) 110110 (2) : 110 (2) =

Задание 2: Полученный результат восстановить в десятичной форме.

Задание: Вычесть числа, выраженные в двоичной форме, полученный результат восстановить в десятичную форму.

Вычесть: 1100 (2) – 110 (2) =

Правила вычитания в двоичной форме.

Вычитание в двоичной форме подобно вычитанию в десятичной системе.

110 0 + 0 = 0

110 0 + 1 = 1

1) 0 плюс 0 равно 0 (См. правила сложения чисел).

2) 1 плюс 1 равно 10. Записываем ноль, а единицу переносим в старший разряд, как и в десятичной системе

3) 1 плюс 1 плюс 1 равно 11 – двоичное число. Записываем 1, а вторую единицу
переносим в старший разряд. Получаем: 1100 (2) , что и соответствует действительности.

Задание: Произвести проверку полученного результата.

1100 (2) = 0×2 0 + 0×2 1 +1×2 2 +1×2 3 = 0 + 0 + 4 + 8 = 12 (10)

110 (2) = 0×2 0 +1×2 1 +1×2 2 = 0 + 2 + 4 = 6 (10)

Таким образом, получаем: 6 + 6 = 12, что соответствует действительности.

Выполнить самостоятельно:

Задание 1. Выполнить вычитание в двоичной форме:

+
1010 10 (10)

110 6 (10)

10000 соответствует: 16 (10)

Выполнение действий происходит следующим образом.

1) 0 плюс 0 равно О

2) 1 плюс 1 равно 10 (что 2 (два) в двоичной системе представляется как 10);
Исторически сложилось, что для сложения чисел использовалось десять пальцев и наоборот:

9 + 1 = 10; 8 + 2 = 10; 1 + 9 = 10; 2 + 8 = 10.

Поэтому и произошла десятичная система счисления. А в двоичной 2 (два) знака: 1 и 0

3) 1 плюс 0 плюс 1 равно 10. Записываем 0 и переносим 1.

4) 1 плюс 1 равно 10, поскольку это последнее действие, записываем 10, точно также сделали это в десятичной системе.

Задание: Произвести проверку полученного результата:

110

Понятие смешанной системы счисления

Среди систем счисления выделяют класс так называемых смешанных систем счисления .

Определение 1

Смешанной называется такая система счисления , в которой числа, заданные в некоторой системе счисления с основанием $P$ изображаются с помощью цифр другой системы счисления с основанием $Q$, где $Q

При этом в такой системе счисления во избежание разночтения для изображения каждой цифры системы с основанием $P$ отводится одинаковое количество разрядов системы с основанием $Q$, достаточное для представления любой цифры системы с основанием $P$.

Примером смешанной системы счисления является двоично-десятичная система.

Практическое обоснование использования двоично-десятичной системы счисления

Поскольку человек в своей практике широко использует десятичную систему счисления, а для компьютера свойственно оперирование двоичными числами и двоичной арифметикой, был введен в практику компромиссный вариант - система двоично-десятичной записи чисел , которая, как правило, используется там, где присутствует необходимость частого использования процедуры десятичного ввода-вывода (например, электронные часы, калькуляторы и т.д.). В подобных устройствах не всегда целесообразно применять универсальный микрокод перевода двоичных чисел в десятичные и обратно по причине малого объема программной памяти.

Замечание 1

В некоторых типах ЭВМ в арифметико-логических устройствах (АЛУ) имеются специальные блоки десятичной арифметики, которые выполняют операции над числами, представленными в двоично-десятичном коде. Это позволяет в некоторых случаях существенно повысить производительность ЭВМ.

К примеру, в автоматизированной системе обработки данных используется большое количество чисел, а вычислений при этом немного. В подобном случае операции перевода чисел из одной системы в другую существенно превысили бы время выполнения операций по обработке информации. Микропроцессоры же используют чистые двоичные числа, однако при этом понимают и команды преобразования в двоично-десятичную запись. АЛУ AVR-микроконтроллера (как и других микропроцессоров) выполняет элементарные арифметические и логические операции над числами, представленными в двоичном коде, а именно:

    считывает результаты преобразования АЦП;

    в формате целых чисел или чисел с плавающей точкой выполняет обработку результатов измерения.

Однако окончательный результат при этом выводится на индикатор в десятичном формате, удобном для восприятия человеком.

Принципы построения двоично-десятичной системы счисления

При построении двоично-десятичной системы счисления для изображения каждой десятичной цифры в ней отводится $4$ двоичных разряда, поскольку максимальная десятичная цифра $9$ кодируется как $10012$.

Например: $925_{10} = 1001 0010 0101_{2-10}$.

Рисунок 1.

В данной записи последовательные четверки двоичных разрядов изображают цифры $9$, $2$ и $5$ десятичной записи соответственно.

Для записи числа в двоично-десятичной системе счисления его необходимо сначала представить в десятичной системе, а затем каждую, входящую в состав числа, десятичную цифру представить в двоичной системе. При этом для написания различных десятичных цифр в двоичной системе счисления требуется разное количество двоичных разрядов. Чтобы обойтись без применения каких-либо разделительных знаков, при двоичном изображении десятичной цифры всегда записывается 4 двоичных разряда. Группа из этих четырех разрядов называется тетрадой .

Хотя в двоично-десятичной записи используются только цифры $0$ и $1$, она отличается от двоичного изображения данного числа, так как десятичный эквивалент двоичного числа в несколько раз больше десятичного эквивалента двоично-десятичного числа.

Например:

$1001 0010 0101_{(2)} = 2341_{(10)}$,

$1001 0010 0101_{(2)} = 925_{(2-10)}$.

Такая запись довольно часто используется как промежуточный этап при переводе числа из десятичной системы в двоичную и обратно. Так как число $10$ не является точной степенью числа $2$, то используются не все $16$ тетрад (тетрады, изображающие числа от $A$ до $F$ отбрасываются, так как эти числа считаются запрещенными), алгоритмы же арифметических операций над многозначными числами в этом случае более сложные, чем в основных системах счисления. И, тем не менее, двоично-десятичная система счисления используется даже на этом уровне во многих микрокалькуляторах и некоторых компьютерах.

Чтобы откорректировать результаты арифметических операций над числами, представленными в двоично-десятичном коде, в микропроцессорной технике используются команды, которые преобразуют результаты операций в двоично-десятичную систему счисления. При этом используется следующее правило: при получении в результате операции (сложения или вычитания) в тетраде числа, большего, чем $9$, к этой тетраде прибавляют число $6$.

Например: $75+18=93$.

$10001101 \ (8D)$

В младшей тетраде появилась запрещенная цифра $D$. Прибавим к младшей тетраде $6$ и получим:

$10010011 \ (93)$

Как видим, несмотря на то, что сложение осуществлялось в двоичной системе счисления результат операции получился в двоично-десятичной.

Замечание 2

Поразрядное уравновешивание часто осуществляют на основе двоично-десятичной системы счисления . Применение двоичной и двоично-десятичной системы счисления наиболее целесообразно, поскольку в этом случае число тактов уравновешивания оказывается наименьшим среди прочих систем счисления. Заметим, что применение двоичного кода позволяет примерно на $20\%$ уменьшить время обработки компенсирующего напряжения по сравнению с двоично-десятичным.

Преимущества использования двоично-десятичной системы счисления

Преобразование чисел из десятичной системы в двоично-десятичную систему счисления не связано с вычислениями и его легко реализовать, используя при этом простейшие электронные схемы, так как преобразовывается небольшое количество (4) двоичных цифр. Обратное же преобразование происходит в ЭВМ автоматически с помощью особой программы перевода.

Применение двоично-десятичной системы счисления совместно с одной из основных систем счисления (двоичной) позволяет разрабатывать и создавать высокопроизводительные ЭВМ, так как использование блока десятичной арифметики в АЛУ исключает при решении задач необходимость программированного перевода чисел из одной системы счисления в другую.

Поскольку две двоично-десятичные цифры составляют $1$ байт, с помощью которого можно представить значения чисел от $0$ до $99$, а не от $0$ до $255$, как при использовании $8$-разрядного двоичного числа, то используя $1$ байт для преставления каждых двух десятичных цифр, можно формировать двоично-десятичные числа с любым требуемым числом десятичных разрядов.

Сложение положительных чисел Сложение многоразрядных чисел осуществляется по правилам двоичной арифметики; особенность проявляется при сложении двух единиц. При S = Ю(10)сумма двух единиц равна двум, что эквивалентно 10(2). Таким образом, вместо одного разряда образуется два. В этом...
(Вычислительная техника)
  • Арифметические действия над числами с плавающей запятой
    Сложение чисел При сложении чисел с плавающей запятой результат определяется как сумма мантисс слагаемых с общим для слагаемых порядком. Если знаки обеих мантисс одинаковы, то они складываются в прямых кодах, если разные - в дополнительном или обратном кодах. В табл. 2.8 приведен порядок действий...
    (Вычислительная техника)
  • Числа в десятичной системе счисления
    10° - единица 109 - миллиард 1024 - септиллион 101 - десять 1012 - триллион 1027 - октиллион 102 - сто 1015 - квадриллион Ю30 - нониллион 103 - тысяча 1018 - квинтиллион 1033 - дециллион 106 - миллион 1021 - ...
    (Физика)
  • Системы счисления
    Человеку издревле приходилось считать различные предметы и записывать их количество. Для этих целей возникла унарная система записи, при которой числа обозначались соответствующим количеством черточек (или засечек). Например, число 5 представлялось как 111 |. Унарная запись очень громоздкая и...
    (Архитектура ЭВМ)
  • Экономичность системы счисления
    Число в системе счисления рек разрядами, очевидно, будет иметь наибольшее значение в том случае, если все цифры числа окажутся максимальными, т. е. равными - 1). Тогда (гр)тах =(/>-1)...(/>-!) = / -1. к цифр Количество разрядов числа при переходе от одной системы счисления...
    (Архитектура ЭВМ)
  • Корректура счисления пути по одной линии положения
    При подходе к побережью обстановка может сложиться так, что судоводитель имеет возможность получить только одну линию положения. Например, открылась вершина горы, на которую можно измерить только пеленг, или прослушиваются сигналы только одного радиомаяка. Такая же обстановка складывается и при определении...
    (Анализ и обработка навигационных измерений)
  • Понравилась статья? Поделитесь ей