Контакты

Проблемы развития и особенности технологии PLC. PLC адаптер от Ростелекома: функционал и схема подключения

Идея осуществлять передачу данных по электрической сети появилась несколько десятков лет назад. Еще в 30-х годах прошлого века в России и Германии проводились эксперименты по использованию силовых линий для передачи информации. Однако до конца 90-х годов технология находила весьма ограниченное применение. В основном она использовалась для оснащения высоковольтных линий электропередачи ВЧ-каналами связи для передачи управляющей информации для технических служб с низкой (2,4 Кбит/с) скоростью.

собый интерес к возможности передачи информации по силовой сети возник с развитием Интернета. Чтобы предоставить доступ в Интернет широким слоям населения, необходимо было связать точки присутствия провайдера с домами или офисами клиентов, большинство из которых не имеют канала для высокоскоростного доступа, аналогичного тому, которым обладает провайдер. Причем для того, чтобы проложить такой кабель, каждому клиенту придется выложить немалую сумму. И если корпоративные пользователи часто могут позволить себе подключение по дорогостоящей технологии, то для домашних, которых значительно больше, это абсолютно неприемлемо. Таким образом, перед инженерами была поставлена задача разработать доступную по цене технологию последней мили, которая надежно связала бы провайдера и его клиентов.

Десятки компаний работали в этом направлении, вложив сотни миллионов долларов в различные технологии, начиная с хDSL, коаксиальных телевизионных кабелей, беспроводного радиодоступа и заканчивая передачей данных через спутник.

Многие технологии основывались на том, чтобы использовать уже имеющуюся инфраструктуру - телефонные линии, сети кабельного телевидения и т.п. - для осуществления доступа в Интернет. Однако очевидно, что с точки зрения распространенности и доступности готовой инфраструктуры с силовой сетью не может сравниться никакая другая. Силовые розетки есть в каждом доме даже в самых отдаленных уголках земного шара.

В 90-х годах проводился целый ряд исследовательских работ по высокоскоростной передаче данных по силовой сети, в ходе которых были выявлены некоторые проблемы: электропроводка характеризуется высоким уровнем шумов, быстрым затуханием высокочастотного сигнала, изменением коммуникационных параметров линии в зависимости от текущей нагрузки. Со временем эти трудности удалось преодолеть. В процессе разработки более совершенных способов модуляции сигналов были созданы технологии высокоскоростного выхода в Интернет при помощи электросети.

Пионером в этой области была британская компания Nor.Web, которая совместно с компанией United Utilities разработала технологию Digital Power Line (DPL), позволяющую передавать голос и пакеты данных через простые электрические сети 120/220 В.

В 1997 году был проведен первый эксперимент, а уже через два года технология прошла испытания в Манчестере и Милане. Однако результаты были неудачными, и Nor.Web прекратила исследования. Неоднородность среды передачи и отсутствие элементной базы и единого стандарта привели к тому, что технология Digital Powerline не получила коммерческого применения.

Вслед за DPL появились решения немецких компаний: Bewag запатентовала телекоммуникационную разработку, позволяющую передавать данные по электропроводам, Veba достигла увеличения скорости передачи данных по силовым сетям, но наибольших успехов в технологии передачи данных по электросетям добилась израильская компания Main.net (www.mainnet-plc.com). Ее технология PLC (Powerline Communications) получила широкое распространение.

PLC-оборудование обеспечивает передачу как данных, так и голоса (VoIP). Скорость передачи данных может составлять от 2 до 10 Мбит/c.

В основе технологии PLC лежит частотное разделение сигнала, при котором высокоскоростной поток данных разбивается на несколько низкоскоростных потоков, передающихся на отдельных поднесущих частотах с последующим их объединением в один сигнал.

Главным ценовым конкурентом «электрического» доступа является асимметричная цифровая абонентская линия (Asymmetrical Digital Subscriber Lines, ADSL). При этом следует отметить, что несимметричные каналы не подходят для решения всех задач, например они не годятся для динамичных онлайновых игр, где обратный трафик достаточно велик.

PLC-службы, такие как высокоскоростной доступ в Интернет (high speed Internet), сегодня доступны в целом ряде европейских стран. Например, в Германии служба предлагается в нескольких городах под разными торговыми марками: Vype (www.vype.de); Piper-Net (www.piper-net.de) и PowerKom (www.drewag.de); в Австрии под торговой маркой Speed-Web (www.linzag.net); в Швеции услуга предоставляется под брендом ENkom (www.enkom.nu); в Нидерландах под именем Digistroom (www.digistroom.nl); в Шотландии — Broadband (www.hydro.co.uk/broadband).

Перспективная технология заинтересовала таких мощных игроков телекоммуникационного рынка, как Motorola, Cisco Systems, Intel, Hewlett-Packard, Panasonic, Sharp и др. Например, Motorola совместно с Phonex Broadband и Sonicblue успешно опробовала метод передачи по электросети музыкальных файлов. Для того чтобы избежать негативных факторов конкуренции, несколько крупных телекоммуникационных компаний объединились в альянс (он получил название HomePlug Alliance) с целью совместного проведения научных исследований и практических испытаний, а также принятия единого стандарта на передачу данных по системам электропитания.

Привлекательность PLC-технологии для энергетических компаний

Для энергетических компаний PLC-технология выгодна по следующим причинам:

Открывает путь на новые рынки, так как превращает линии электропередачи в сеть передачи данных;

Позволяет предлагать клиентам такие востребованные услуги, как высокоскоростной доступ в Интернет, телефонию и др.;

Не требует частотного ресурса и соответствующих лицензий;

Недорогое оборудование обеспечивает низкие начальные капиталовложения и возможность поэтапного наращивания мощностей;

Позволяет предложить новые виды услуг без существенных капиталовложений, поскольку электросетевое оборудование уже имеет большое количество пользователей, развитую инфраструктуру для построения системы поддержки клиентов, ремонтные службы и т.п.;

Предоставляет энергетическим и муниципальным компаниям возможность постоянного дистанционного мониторинга всех параметров потребления электроэнергии, воды, газа, тепла и транзакций по оплате любых видов услуг.

Высокоскоростной доступ в Интернет

Стоимость реализации технологии последней мили складывается из стоимости линейной инфраструктуры (примерно 60-80% от общей стоимости), стоимости оборудования (20-30%) и стоимости проектирования, подготовительных инжиниринговых работ и т.п. (10-20%). Широкая распространенность электрических сетей 0,2-0,4 кВ, отсутствие необходимости в дорогостоящих работах по проводке траншей и пробивке стен для прокладки кабелей стимулируют повышенный интерес к ним как к среде передачи данных. В качестве примера высокоскоростного подключения к Интернету можно привести технологию швейцарской компании Ascom, являющейся лидером в производстве систем и сетей связи на основе PLC-технологии. Компания предлагает комплексное решение, при котором питающие здание электрические кабели служат «последней милей» для передачи данных, а электропроводка внутри здания выступает в роли «последнего дюйма». Наружная (Outdoor; рис. 2) и внутренняя (Indoor; рис. 3) системы позволяют использовать одну и ту же передающую среду и различные несущие частоты. Для передачи данных по питающим здание фидерам применяются низкие частоты, а внутри зданий - высокие.

Для наружных приложений компания Ascom предлагает использовать три несущие со значением средних частот 2,4; 4,8 и 8,4 МГц. В зависимости от расстояния передачи каждая из несущих передает данные со скоростью от 0,75 до 1,5 Мбит/с. При небольшом расстоянии между промежуточной приемопередающей точкой (например, трансформаторной подстанцией) и зданием применяются все три несущие. При этом достигается скорость передачи до 4,5 Мбит/с. При минимальной скорости передачи без репитеров может быть покрыто расстояние 200-300 м. Для наивысших значений скоростей передачи расстояние сокращается примерно вдвое.

Концепция репитеров позволяет PLC вдвое расширить область действия наружных и внутренних приложений. Репитер принимает трафик данных от мастер-устройства и передает его на оконечные устройства, которых оно не может достичь напрямую.

Еженедельно компания Ascom выпускает около 6 тыс. PLC-адаптеров и 2 тыс. сетевых устройств.

В качестве примера реализации проектов Ascom Powerline можно привести проект одного из ведущих поставщиков электроэнергии в Германии - компании RWE, предоставляющей доступ через сеть RWE PowerNet по более низкой цене, чем телевизионные и кабельные компании. В настоящее время на базе оборудования Ascom Powerline Communications AG уже реализован ряд проектов в странах Восточной Европы, готовятся пилотные проекты по внедрению PLC на Украине и в России.

PLC-технологии для домашних сетей

Возможность передачи информации по электросети позволяет решить проблему не только последней мили, но и «последнего дюйма». Дело в том, что количество проводов, которые используются для соединения домашних ПК и других предметов домашней электроники, уже возросло непомерно: в 150-метровой квартире прокладывается до 3 км различных кабелей. А электрическая сеть как раз является идеальной средой для передачи управляющих сигналов между бытовыми приборами, работающими в сети 110/220 В. PLC-технологии для домашних сетей позволяют эффективно реализовать концепцию интеллектуального дома, предоставив целый ряд услуг по дистанционному мониторингу, охране жилища, управлению его режимами, ресурсами и пр.

В частности, известная компания LG предлагает связывание своей бытовой электроники посредством силовой сети (рис. 5):

Интернет-холодильник осуществляет функции контроля и мониторинга цифровой электроники, подключенной к сети, и предоставляет доступ в Интернет;

Интернет-стиральная машина управляется по сети, позволяет загружать программы стирки из Интернета;

Интернет-микроволновая печь позволяет скачать рецепт блюда из Интернета, осуществлять удаленный Интернет-мониторинг;

Интернет-кондиционер управляется через Интернет.

Ожидается, что PLC-технология сможет дать новый импульс развитию средств передачи данных по линиям электропитания и сделает возможным прямой доступ в Глобальную сеть практически из любой точки земного шара по минимальной стоимости. Пока технология не получила широкого распространения, однако в ближайшем будущем можно ожидать, что она серьезно потеснит альтернативные технологии и приведет к существенным изменениям на рынке провайдерских услуг: к снижению расценок на доступ в Сеть, включая цены на подключение по коммутируемой телефонной линии и по выделенным линиям.

Если PLC-технология получит распространение, она сможет значительно изменить расстановку сил на рынке предоставления услуг Интернет-доступа и будет способствовать разработке новых принципов проектирования силовых электрических сетей - с учетом как энергетических, так и коммуникационных требований.

Тем, кто пропустил первую часть или хочет вспомнить первую часть .

Для тех кто понимает, что такое автомат и УЗО, для чего они необходимы, что и от чего защищают – переходите к разделу .

Часть вторая

Посмотрим какая взаимосвязь между энергетикой и конечным ИТ-оборудованием, будем разбираться в вопросе- в каких случаях перебоев в сети питания операционная система гарантированно должна работать без сбоев.


Вопросы переключения на резервный источник питания

Электроснабжение информационного оборудования организовывается с резервированием. Рассмотрим организацию электроснабжения в части ЩБП-БРП-БП (щит бесперебойного питания-блок распределения питания- блок питания). Типы резервирования бывают следующих типов:

  1. Резервирование кабелей к стойке, оборудованию, с использованием отдельных блоков распределения питания, БРП (рисунок 1)
  2. Резервирование шин питания в щите электроснабжения, с использованием отдельных блоков распределения питания, БРП (рисунок 2)
Резервирование на уровне блоков питания непосредственно в сервере, коммутаторе, ИТ-устройстве (рис.3)
Резервирование при помощи стоечного переключателя нагрузки, стоечного АВР (СПН, он же ATS) (рис.4)

Для переключения между основным и резервным вводом могут использоваться:

  • в сфере информационных систем: шкафы АВР/STS (Static Transfer Swith) для систем большой мощности, для перехода на питание от резервного ИБП в момент работы полноценной системы 2N или комбинаций систем N+1;
  • в сфере систем электроснабжения различного вида схемы АВР (на контакторах, на контроллерах);
  • на уровне серверной стойки: автоматические быстродействующие стоечные АВР\ATS (Automatic Transfer Switсh);
  • на уровне конкретного информационного оборудование: дублированные блоки питания.
Как мы для IT-оборудования, «перерыв в электроснабжении недопустим». А что скрывается под этой фразой? Что такое «перерыв» в питании информационного оборудования? Сейчас разберемся на живом примере.

Заказчик внедряет локальную серверную вместе с IT-инфраструктурой двух этажей под офис фирмы. На этапе обсуждения системы электропитания у него возникает желание поставить все информационное оборудование с одним блоком питания (БП), а второй слот под БП серверов оставить свободным, и на всю стойку смонтировать единый ATS стоечного исполнения. (рис.4, схема).

Внешний вид тыльной стороны сервера с дублированными блоками питания

Как Заказчик аргументировал свое желание :

  • Экономия средств ($500-800 с каждого устройства в стойке)
  • Можно поставить два простейших БРП и применить их уже для распределения питания после ATS
  • Абсолютно аналогичный уровень надежности системы, по сравнению с классическим способом распределения
Мы взяли тайм-аут, подробно исследовали желание Заказчика с различных точек зрения, надежности сервисов в целом в гарантийный и послегарантийный срок, а также:
  • стоимости (экономии) капитальных затрат при внедрении (CAPEX)
  • стоимости затрат на амортизацию, содержание ЗИП, трудозатрат персонала клиента (OPEX)
  • сравнения алгоритмов работы и времени переключения на резервную линию в обоих вариантах, проверка на «единые точки отказа»
  • уровня рисков зависания и/или перезагрузки операционных систем информационного оборудования, падения информационных сервисов, которые на них работают.
И вот что выяснилось:

Некоторые выдержки из статьи

В последние годы государственные стандарты в области измерений параметров электрической энергии, относящихся к КЭ, активно развивались и были неоднократно переработаны


"
Важным изменением стала замена ГОСТ 13109-97 «Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения» на ГОСТ 32144-2013. Данные стандарты определяют различную номенклатуру показателей качества электроэнергии.


А вот насколько быстродействующим? Как определить то время в миллисекундах, за которое сервис (и сервер) заказчика не упадет, а операционная система не уйдет в «critical error»?

Существует стандарт CBEMA (Computer and Business Equipment Manufacturers Association), который после некоторых корректировок ныне известен как «кривые ITIC» (Information Technology Industry Council), а ее варианты включены в стандарты IEEE 446 ANSI. Согласно этим нормативам, электронные схемы блоков питания должны сохранять работоспособность в течение 20 мс (или 0,02 секунды, то есть период).


Те самые кривые ITIC

Согласно требованиям к блокам питания серверных и компьютерных систем Server System Infrastructure можем сказать, что параметр блока питания Tvout_holdup во время провала напряжения питающей сети обеспечивает работу информационного оборудования минимум 21 мсек. То есть, полный период сети – это гарантированное время нормальной работы сервера или коммутатора. Параметр Tpwok_holdup определен минимально 20мсек.

некоторые подробности по параметрам SSI можно посмотреть тут

Справка: Hold-up time (время удержания) - это временной промежуток, в течение которого блок питания может поддерживать выходные напряжения в определенных пределах после пропадания на его входе питающего напряжения. В большинстве компьютерных блоков питания Hold-up time характеризует еще и через какой промежуток времени power good сигнал (PWR_OK) скажет системе, что напряжения, вырабатываемые блоком питания, нестабильны (для компьютерных блоков питания этот параметр обычно более 16 мс).

Вот одна из таблиц из документа

А это диаграмма (time-line) с регламентируемыми алгоритмами работы БП


Теперь посмотрим, какое время переключения заявляет APC, например, для стоечного переключателя нагрузки марки AP7721 . Видим, что тут у нас обычно 8-12 мс, но 18 мс – это максимальное время переключения.

Можем сделать вывод, что время переключения на резервный ввод для стоечного переключателя нагрузки соответствует спецификации работы блока питания серверного оборудования. Получается, что сбоев в работе информационного оборудования не будет.

Сводная таблица таймингов элементов системы


А что у нас с экономической составляющей и какой из вариантов более выгоден и отказоустойчив?

Предположим, у нас в стойке имеются три небольших сервера, в которые можно поставить по два блока питания и три устройства с недублированными блоками питания. Все критически важны и отказ любого из устройств выведет в отказ всю систему заказчика в целом. Стоечный переключатель нагрузки нам в любом случае понадобится. Это порядка 18 тыс. рублей.

Заказчик заявляет, что PDU (БРП) им не нужны, значит, в бюджете будет лишь стоимость ATS – те же 18 тыс. рублей. В качестве замены блокам распределения питания (PDU) Заказчик предлагает использовать распределение питания «на борту» стоечного переключателя нагрузки. Также Заказчик планирует купить сервера с двумя слотами под блоки питания, но в комплектации с одним БП ради экономии.

Классический вариант предполагает комплект из 2-х PDU – около 32 000 рублей, 3 дополнительных блока питания в серверы по $500 каждый за 84 тыс. рублей итого. ATS за те же 18 тыс. рублей. Сложив все, мы понимаем, что классическое решение обойдется Заказчику примерно в 134 тыс. рублей.

Вроде бы действительно, Заказчик прав, деньги совершенно другие. Но давайте посмотрим с точки зрения отказоустойчивости и удобства обслуживания обоих вариантов:
Вариант заказчика: Единая точка отказа – стоечный переключатель нагрузки. Если с ним что-то случится, то мы теряем всю стойку целиком. Значит, надо иметь ЗИП прямо на площадке, что прибавляет к смете 18 000 рублей. Блоки питания в серверах стоят по одному, они тоже являются точками отказа. Значит, желательно иметь хотя бы один, а лучше все три блока питания в резерве на площадке. Примем, что нужны три БП в ЗИП – это еще плюс 36 тыс. рублей. Нужно проверять мощность, которую может коммутировать стоечный ATS. Cейчас мы исходим из того, что 3 кВт или 16А нам хватит на все оборудование стойки. Если нам понадобится ATS на 32А (7кВт), то это будет уже значительно дороже (более 100 тыс. руб). То есть бюджет варианта Заказчика при детальном рассмотрении надежности вырастает до 160 тыс. рублей . При этом в случае ЧП несмотря на то, что запасные части будут на площадке понадобится down-time для замены устройства.

Единая точка отказа (SPOF, Single Point Of Failure) - узел, линия связи или объект системы доступности данных, отказ которого может вывести из строя всю систему, или вызвать недоступность данных
Вариант Открытых Технологий : По , но при необходимости добавляется ATS для мелкого сетевого оборудования с единственным блоком питания.

Точка отказа – тот самый ATS. Если с ним что-то случится, то мы теряем всю стойку целиком. Согласны с тем, что надо иметь ЗИП прямо на площадке. Но в нашем случае, если отказывает только ATS, то это может повлиять лишь на работу коммутаторов и вспомогательного оборудования. Сами серверы спокойно продолжат работу. Блоки питания в ЗИП не нужны. Так как при выходе из строя одного из дублированных блоков питания сервер продолжит работу на оставшемся, и, скорее всего, дождется нового блока питания от вендора, вне зависимости от удаленности площадки.

Интерпретация термина SPOF применительно к ИТ-системам

Единая точка отказа (SPOF, Single Point Of Failure) – узел, устройство или точка схемы, отказ которого может вывести из строя всю систему, вызвать недоступность данных и сервисов. Рассматривается при разработке и проектировании любых критически важных систем. Полное отсутствие единых точек отказа ведет к значительному увеличению капитальных затрат при внедрении, поэтому критичность работы той или иной системы, сервиса определяется на этапе проектирования исходя из бюджета проекта, а также пожеланий и требований Заказчика. Мы всегда находим вариант идеального решения для каждого Заказчика, определяя несколько вариантов реализации проекта, и предлагая их Заказчику. В результате на этапе сдачи проекта заказчик получает именно то решение, которое он хотел видеть по соотношению цена/качество/надежность.


Таким образом, подключать все оборудование стойки на единый ATS можно, но не рационально, так как в этом случае получаем единую точку отказа по питанию. Закупка серверов с дублированными блоками питания предпочтительна в любом случае, так как отказоустойчивость на уровне информационного оборудования увеличивается в разы.

Стоечный переключатель нагрузки обеспечивает корректное и почти мгновенное переключение на резервный ввод, информационное оборудование даже не почувствует этого, программные продукты и операционные системы продолжат корректно работать. Стоечные блоки распределения питания в любом случае нужны и экономить на них не надо. Видимая экономия на капитальных затратах по распределению питания может обернуться нерешаемыми проблемами при эксплуатации, например, необходимости «гасить» всю стойку только для того, чтобы переместить ATS в другой юнит или провести ревизию стоечного переключателя нагрузки. В любом случае для дублированных блоков питания должен быть ЗИП, а он не всегда возможен или имеется.

Внешний вид съемного блока питания сервера:

Применение стоечного АВР имеет свои особенности

Например, мощность такого АВР ограничена, и переключать он может комплекс сравнительно слабых с точки зрения потребляемой мощности нагрузок. Есть вопросы к количеству выходных разъемов питания. Например, вышеупомянутый ATS AP7721 оснащен по входу разъемами типа С14, что означает максимальную мощность переключения 2,5 кВт. На большую мощность нагрузки существует 2U модель AP7724 , который по входу комплектуется разъемом на 32 А, то есть максимальная мощность оборудования может быть до 7кВт. А это значит, что типовую стойку с оборудованием можно подключить на этот АВР полностью. Однако цена подобного решения будет более 100 тыс. рублей.


Работа информационного оборудования с двумя блоками питания была хорошо описана в статье Вадима Синицкого @dimskiy . Как видим, есть свои достоинства и недостатки. И наличие резервных блоков питания для информационного оборудования в любом случае необходимо, особенно если объект находится вне зоны быстрой поставки блока питания от вендора. Кроме того, хотим заметить, что онлайн калькуляторы расчета мощности новых серверов от вендоров могут применяться лишь как ориентир для системных администраторов, персонала Заказчика.

Реальные возможности подключения нового мощного сервера к существующей стойке должны оцениваться с учетом изначального проекта электроснабжения, текущего состояния и нагрузки электросети стойки, серверной, ИБП, генератора…. С точки зрения подключения в стойке также стоит учитывать:

  • текущие возможности PDU, типа свободных разъемов в них
  • номиналов автоматов в щитах и сечения и фазность кабельной линии к стойке.
Отдельного внимания заслуживает надежность работы системы электроснабжения серверной, если она построена по системе, изображенной на (с двумя системами шин), наличие нового мощного сервера может в случае ремонтных работ привести к перегрузке всей системы электроснабжения, снизить время автономной работы , заставить ИБП перейти на байпас по перегрузке и прочее…

А как у вас построена система распределения в стойке?
Каков ресурс БП для ИТ-оборудования и алгоритм их программного резервирования?
Какие вы предпочитаете БРП использовать: базовые, с мониторингом? насколько полезна в практике функция «управляемый БРП/PDU» и помогла ли она вам когда либо?

Только зарегистрированные пользователи могут участвовать в опросе. , пожалуйста.

Разберем, прежде всего, что представляет собой современная силовая сеть, обеспечивающая доставку электроэнергии потребителям (рис. 3.1). Имеется линия электропередачи ЛЭП 110 кВ, которая подходит к понижающей подстанции. Далее напряжение 110 кВ трансформируется в напряжение 10 кВ, затем на подстанции  в трехфазное напряжение 220 В. Это фазное напряжение, и таких фаз три  Ф1, Ф2, Ф3, линейное напряжение  380 В.

По готовой проводке можно легко организовать связь в любом сечении сети (см. рис. 3.1). В энергосистемах России это и делается, хотя неудовлетворительное состояние сети и алюминиевые провода весьма ограничивают этот процесс. Однако поскольку мы говорим о «последней миле», нас будет интересовать технология в относительно низковольтовой части, а именно в трехфазных бытовых сетях напряжением 220 В.

Суть понятна – не надо «тянуть» сеть, а цели следующие: низкоскоростная передача данных (управление, учет); высокоскоростная передача данных (Интернет); телефония; домашняя автоматика, сервис «умный дом».

По этой технологии связи идет вторжение в чужую сеть, и в России существует ГОСТ Р51317.3.8-99  «Передача сигналов по низковольтовым электрическим сетям», регламентирующий такое вторжение (стандартом определена полоса частот в диапазоне 3 – 525 кГц) .

В соответствии с ГОСТ Р51317.3.8-99 связь по силовой сети может быть организована в следующих диапазонах частот:

1) 3 – 9 кГц – может использоваться по согласованию с потребителями электрической энергии;

2) 9 – 95 кГц – запрещен для использования;

3) более 95 кГц – разрешен без ограничений (любой вид кодировки, модуляции).

Наиболее современной и распространенной является технология Powerline, ориентированная на цифровую обработку микропроцессором (DSP). В настоящее время с помощью этой технологии возможна передача информации со скоростью до 85 Мбит/с на расстояние 200 м.

Особенности технологии PLC:

связь возможна, если все терминалы подключены к одной фазе (см. рис. 3.1);

значительные затухания в линии;

существенные помехи кондуктивного характера (кондуктивные помехи представляют собой токи, текущие по проводящим конструкциям и по земле);

нестабильность линии связи.

Все это накладывает существенные ограничения на использование описанной технологии. Рассмотрим методы, применяемые в настоящее время.

Проблемы помехоустойчивости решаются при кодировании и модуляции. Заметим, что такие системы строятся по адаптивному принципу. В начале передачи устанавливается пробный режим «Вкл./выкл.» и идет мониторинг линии (прежде всего по затуханию). В зависимости от состояния меняются частоты и скорость работы, т. е. идет адаптированная передача.

Импульсные помехи, возникшие при коммутациях, могут быть столь короткими (менее 1 мкс), что система может не успеть адаптироваться. Для этого применяют избыточные коды  сверточные (см. разд. 1), коды Рида – Соломона с декодированием по алгоритму Витерби.

Процедуры декодирования подробно рассматриваются в теории кодирования , мы же остановимся на сути декодирования по алгоритму Витерби (алгоритм получил название декодирования по максиму правдоподобия). Допустим, имеется множество передаваемых кодовых комбинаций U i и одна из них передается. При декодировании известны возможные кодовые комбинации R j . В декодере производится вычисление условных вероятностей P(R j /U i), естественно, все они разные. Из множества этих вероятностей выбирается максимальная и принимается соответствующее ей решение  R j .

Декодирование кода Хемминга предполагает регулярное правило решения, а алгоритм Витерби – статис-тическое.

Модуляция. Высокоскоростной поток разбивается на несколько низкоскоростных, по каждому из которых передаются биты исходного слова. Эти низкоскоростные потоки подаются на частотный модулятор с несколькими несущими (поднесущими) (рис. 3.2).

При обычной FDM (частотной модуляции) между несущими вводится большой частотный интервал для лучшего разделения сигналов в приемнике, но использование спектра неэффективно, так как сигнал в целом занимает большую полосу.

Предположим, сигнал низкоскоростного потока (бит)  прямоугольный простейший импульс. По теореме о переносе спектра его спектр переносится в область поднесущей в виде двух боковых полос. И так будет у каждой поднесущей (рис. 3.3). Весь этот набор формирует полосу частот сигнала.

ВPLC-технологии применяют ортогональное частотное разделение, т. е. спектры при ортогональных несущих (рис. 3.4). Эта модуляция называется OFDM. Нетрудно заметить, что несущие частоты выбраны при значении других спектров, равных нулю. Ортогональность спектров позволила уменьшить полосу частот всего сигнала (см. рис. 3.4).

0 5 10 15 20 25 30 35 40 рад/с 50

Рис. 3.3. Спектр сигнала FDM

0 3 6 9 12 15 18 21 24 рад/с 30

Рис. 3.4. Спектр сигнала при OFDM

На этом процесс модуляции не заканчивается. Каждая несущая модулируется по какому-либо закону. Это может быть, например, квадратурная амплитудная модуляция (КАМ), фазовая относительная модуляция (ОФМ) и др., но в любом случае это должна быть многопозиционная система сигналов, позволяющая повысить пропускную способность канала.

При многопозиционной ОФМ-модуляции в каждой поднесущей кодируется сразу два бита (дибит) по следующему принципу: Δφ = 0, биты 00; Δφ = = 90, биты 01; Δφ = 180, биты 10; Δφ = 270, биты 11.

Четыре поднесущие, с помощью каждой из которых реализуется ОФМ-2, приведены в табл. 3.1.

Таблица 3.1

Кодирование поднесущих

Поднесущая,

После кодирования все поднесущие собираются в один пакет, несущий информацию (рис. 3.5). Таким образом передается последовательность 00100111.

В итоге сборки сформирован сигнал DQPSK – дифференциальной квадратурной фазовой манипуляции.

ВтехнологииPowerline используется 84 поднесущих с шагом в 0,2 МГц в полосе частот 4 – 21 МГц (полоса разрешена стандартом), и по каждой поднесущей передается два бита.

Вернемся к адаптации системы к переменным условиям среды. Затухание линии не постоянно, так как это бытовая сеть энергоснабжения, во время тестирования может быть обнаружено большое затухание на частотах некоторых поднесущих. В технологии предусмотрен специальный метод решения этой проблемы – динамическое включение и выключение передачи сигналов на пораженных поднесущих (рис. 3.6). Естественно, что скорость передачи при этом меняется.

Благодаря данному методу теоретическая скорость технологии Powerline может достигать 100 Мбит/с.

Обработка сигнала OFDM производится сигнальным микропроцессором, а формирование линейного сигнала – специальным модемом, для которого разработаны микросхемы. Например, на основе микросхемы К1446ХК1 разработан трансивер для клиентского модема со следующими параметрами: скорость  до 200 Мбит/с, модуляция OFDM с 1530 поднесущими (компания TelLink).

Бытовая сеть электропитания служит общей средой передачи для нескольких терминалов, и в одно время на связь могут выходить несколько устройств. Для предотвращения конфликтов и столкновения трафика необходимо придерживаться протокола доступа к среде. В данной технологии принят известный протокол Ethernet (CSMA/CD) с некоторыми добавлениями приоритета – пакеты голоса и видео передаются с максимальным приоритетом, так как для этих данных задержка недопустима.

ТехнологияPowerline не единственная в этой области. Есть технология стандарта Х.10, которая применяется при компьютеризации жилой квартиры («умный дом») . Суть этой технологии проста. Передача сигнала осуществляется на частоте 50 Гц. В момент времени перехода синусоиды через ноль вводится временное окно, через которое и происходит передача (рис. 3.7). В окно помещается радиоимпульс частотой 120 кГц, а помехи создаются «кусочком» вырезанной синусоиды . Скорость работы невелика – до 50 бит/с, но этого достаточно для управления бытовыми приборами.

Примерный состав сети, построенной на основе PLC-технологии, показан на рис. 3.8.

4. Атмосферные оптические линии

Атмосферная оптическая линия – это линия с открытым оптическим каналом через атмосферу (рис. 4.1). На рис. 4.1 приняты следующие обозначения: ФД  фотодетектор; мультиплексор  цифровое устройство, объединяющее стандартные цифровые потоки Е1; демультиплексор выполняет обратную операцию.

Поток Е1 состоит из 30 цифровых каналов, по которым информация поступает к терминалам. Так что можно считать, что система участвует в решении проблемы «последней мили».

Можно назвать следующие преимущества оптического канала:

как и в любом оптическом канале, большая пропускная способность;

отсутствие помех электромагнитного характера;

информационная безопасность. Оптический луч сфокусирован в узкий пучок и злоумышленнику невозможно «включиться» в него;

возможность быстрого развертывания системы, что особенно важно в условиях плотной городской застройки;

не требуется получения разрешения у органов надзора на использование рабочих частот.

Существенный недостаток атмосферного канала – зависимость связи от состояния атмосферы. Именно по этой причине система может перекрыть только незначительное расстояние – до 3 км. Что же представляет собой атмосферный канал? Атмосфера состоит из атомов различных веществ, и они влияют на ее прозрачность в оптическом диапазоне. Прозрачность зависит от массы воздуха, от содержания водяного пара и пыли. Затухание определяет длина волны излучения. Атмосфера прозрачна в диапазоне от 0,3 до 2 мкм. На участке видимого спектра от 0,6935 до 0,6943 мкм имеется несколько микроокон прозрачности .

На среду передачи влияют фон, естественная освещенность окружающей среды, ослабление, турбулентность, хаотические изменения скорости, температуры, давления атмосферы, что приводит к случайным замираниям сигнала.

Наиболее известны в настоящее время технологии FSO, LaserLink. Остановимся на их особенностях.

Излучатели. Работают в диапазоне 0,75 – 0,9 мкм. В качестве излучателей применяют как полупроводниковые лазеры, так и светодиоды. Отметим следующие особенности излучателей:

применяется автоматическая установка угла излучения (диаграмма направленности) в зависимости от длины трассы. Чем длиннее трасса, тем уже диаграмма, и на приемник попадает более сконцентрированная мощность. Для реализации установки используются два лазера с двумя объективами (антеннами). Один лазер имеет большой угол излучения, другой  узкий. Переключение лазеров идет автоматически;

при узком луче излучения имеется автоматическая система юстировки, точного совпадения луча с приемной антенной. Иначе принимаемый луч может потеряться;

скорость передачи зависит от затухания и меняется автоматически. При большом затухании сигнала скорость падает и наоборот;

в некоторых технических решениях приемопередающего модуля зависимость от прозрачности атмосферы исключается переходом на другую длину волны в другом окне прозрачности (резервный канал).

Приемник. Используются фотодиоды со структурой PIN (структура типа P-I-N-полупроводника) и лавинные фотодиоды (рис. 4.2). Такие структуры имеют повышенный коэффициент чувствительности, малоинерционные.

Специфика названных фотодиодов следующая. В P-I-N-полупроводнике имеется один слой чистого полупроводника I с хорошей оптической прозрачностью. Оптическая волна проникает на значительную глубину, и возбуждение электронов идет в большом объеме. В лавинном фотодиоде идут лавинные процессы размножения носителей тока. Указанные процессы способствуют увеличению чувствительности приемника.

Приемник и излучатель объединены в приемопередающий модуль (ППМ), в котором находится и кодек (рис. 4.3). Апертура  это способность оптического объектива собирать свет, обычно она характеризуется угловыми размерами. Двух- и трехапертурные системы позволяют решить перечисленные выше задачи, а именно:

переход на резервную длину волны в случае большого затухания на основной;

изменение диаграммы направленности в зависимости от расстояния меж-ду точками приема и передачи;

возможность отслеживать положение оптической оси атмосферной линии и корректировать ее. Это особенно важно при работе в условиях города, так как вибрации зданий, ветровые нагрузки и другие причины могут привести к потере связи.

Интересно решение приема сигналов в технологии FSO. В передатчике излучаются два когерентных, пространственно разнесенных луча с одинаковой амплитудой. Один луч опорный, а другой несет информацию, т. е. модулируется по фазе. Конечно, оба луча одинаково поражаются вредными воздействиями и возмущениями среды. Эти лучи попадают на фотоприемник, который выполнен в виде матрицы из фотодиодов (рис. 4.4). Пришедшие лучи создают на поверхности матрицы интерференционную картину. В некоторых точках матрицы произойдет усиление суммарной электромагнитной волны, а в других  ослабление, т. е. образуются темные и светлые места.

Соответственно поведут себя и сигналы, снятые с фотодиодов. При смене фазы в информационном луче на 180 положение темных и светлых областей поменяется, поменяются и сигналы. Матрица имеет большую площадь, и поэтому проблем с вводом излучения в приемник нет.

У данного метода есть еще одна особенность. Известны два метода приема оптических сигналов – прямого преобразования и гетеродинный (термин пришел из радиотехники). Прямой метод прост в реализации: на фотодиод падает луч и снимается напряжение, обратное для P-N-перехода. Этот метод нашел применение в кабельной оптике.

Второй метод, гетеродинный, более сложен и требует наличия маломощного источника в самом приемнике. Итак, на вход приемника пришел информационный сигнал, он складывается с сигналом гетеродина. Оптические сигналы  это электромагнитные волны. Запишем их так:  напряженность электрического поля информационной волны и
 напряженность поля гетеродина. Попав на площадку матрицы ФД, сигналы складываются: . Фотодиод выдает ток (или напряжение), пропорциональный падающей мощности (квадрату напряженности поля):

Если раскрыть произведение косинусов, то в приведенном выражении можно выделить члены, содержащие информацию о фазе информационного луча φ. Их будет несколько, и в том числе
, который значительно увеличит уровень полезного сигнала. Напомним, что в атмосферном канале (см. рис. 4.1) присутствует фон. По сути это помеха для связи, и за счет члена
, входящего в приведенное выше выражение, возрастает сигнал, увеличивается соотношение «сигнал/помеха». Таким образом, в какой-то мере решается проблема помехоустойчивости.

Кодирование информации идет в канальном кодере Рида – Соломона.

Цифровые потоки Е1 объединяются по плезиохронному принципуPDH. Для объединения используется код HDB3. Это трехуровневый код, в котором исключаются длинные последовательности нулей. Эта мера необходима для сохранения синхронизации системы. Принцип образования такого кода и его отличие от кода AMI показаны на рис. 4.5. В коде AMI длинные последовательности нулей фактически означают потерю сигнала. Выделить из этого кода синхронизирующую последовательность невозможно.

Если в коде HDB3 более четырех нулей, в информационную последовательность вставляется служебный сигнал (V-сигнал) и синхронизация сохраняется.

На основании приведенного материала можно сделать следующие выводы:

1)в приемнике используются свойства интерференционной картины на матричной мишени фотодиодов, т. е. применяется гетеродинный способ приема. В качестве гетеродина используется сигнал второго лазера;

2) для передачи используется трехпозиционный код HDB3, допускающий синхронизацию системы;

3) для организации тракта передачи применяются светодиоды, полупроводниковые лазеры и средства корректировки;

4) в основе принимающей матрицы используются специальные фотодиоды.

При современном уровне развития компьютерной техники и сетевых технологий, к сетям предъявляются жесткие требования. Компьютерная сеть должна обеспечивать требуемую для конкретных условий скорость передачи; так же она должна быть мобильной, с большим количеством точек доступа, при этом не должна требоваться прокладки кабеля; сеть должна иметь простое администрирование; она должна обеспечивать высокую надежность при простых технических решениях; сеть должна поддерживать все возможные типы сетевого оборудования и при всем этом она должна быть дешевой.

При всеобщей глобальной компьютеризации, как простого населения, так и предприятий, организаций и спецслужб появилась необходимость организации компьютерных сетей

Одним из вариантов организации сетей является система передачи данных по энергосетям

В дипломной работе будет показана схема организации сети передачи данных по энергосетям на примере п. Алхан-Чурт с применением технологии PLC

Раздел БЖД выполняется с целью создания безопасных условий труда при работе с сетями энергопитания

В экономической части диплома будет произведен расчет себестоимости проектируемой сети и экономическая целесообразность построения сети на основе PLC технологии

Технология PLC - это, в первую очередь, решение проблемы "последней мили". Потому что в этом решении используется внутридомовая электросеть. Сама услуга предоставляется по принципу Plug&Play. То есть адаптер или абонентский модем, приобретенный потребителем в магазине, не требует никаких настроек: при включении в розетку автоматически идет связь с головным устройством, которое в каждом доме одно; происходит автоматическая настройка конфигурации и присвоение IP-адреса. Преимуществом технологии является также и то, что для подключения к Интернету нет нужды ждать монтеров и пускать их к себе домой. Другой дополнительный плюс - роуминг: модем работает во всех домах, где есть PLC-покрытие. Он не прописан жестко к конкретному адресу и работает и внутри района, и внутри города, и в другом городе тоже. Сейчас строятся сети одновременно в пяти городах, и в стадии подготовки проектов находятся еще минимум 5-6 городов России.

При всех достоинствах этой технологии рынок Интернет-доступа уже насыщен, и мы буквально на себе чувствуем, как медленно идет нарастание абонентской базы. Если клиент уже подключился к провайдеру и сделал проводку, то привлекать его низкой ценой уже нет смысла, тем более что опуская цены оператор ставит сам себя в тяжелое положение. Средний платеж за широкополосный доступ уже и так небольшой. Поэтому для развития необходимо вводить новые сервисы и услуги. Например, так называемый "конструктор". К базовому PLC-модему "пристегиваются" разные модули: Ethernet-розетка; Wi-Fi-точка доступа; телефонный модуль, к которому можно подключить и обычный аналоговый городской телефон, и внутренний аппарат, и VoIP-устройство. С помощью последнего можно организовать внутреннюю телефонную сеть внутри города (например, прямые каналы телефонной связи с родственниками).

Еще один подключаемый модуль -видеокамера, с помощью которой можно организовать у себя дома систему видеонаблюдения, даже не подсоединяя ее к компьютеру. Весь трафик она передает по электросети на сервер провайдера. И пользователь в любой точке мира может, выйдя в Интернет, зайти в свой личный кабинет на клиентском интерфейсе и проверить обстановку дома. Подобное решение идеально подходит для контроля за детьми, приходящими нянями и домработницами. Кроме того, через Web-интерфейс можно настроить различные дополнительные функции -такие, например, как система motion detection (контроль движения), которая позволит камере выполнять функции объемного датчика движения: когда картинка сменилась, пошел сигнал на сервер, высылается SMS на мобильный телефон пользователя - он подключается к Интернету и проверяет, все ли в порядке.


Технология PLC (Power Line Communications - коммуникации по силовым линиям), также называемая PLT (Power Line Telecoms), является проводной технологией, направленной на использование кабельной инфраструктуры силовых электросетей для организации высокоскоростной передачи данных и голоса. В зависимости от скорости передачи делится на широкополосную (ВPL) со скоростью более 1 Мбит/с и узкополосную (NPL).

Тестирование службы широкополосного доступа в Интернет через электросеть было запущено в Шотландии. Эта инициатива принадлежит электроэнергетической компании Scottish Hydro Electrics. Как сообщает британское издание PC Advisor, в тестировании "Интернета через розетку" было задействовано около 150 пользователей. Каждый абонент получил доступ в Интернет на скорости 2 Мбит/с. По цене это было более чем в два раза выгоднее предложения другого провайдера Интернета. Интерес к новой службе проявили уже несколько энергетических компаний страны. Кроме того, динамично внедряет PLC ведущий поставщик электроэнергии в Германии компания RWE. Например, в Германии люди даже квитанции за электроэнергию не заполняют: информация со счетчиков приходит напрямую к поставщику электричества по электропроводке. Аналогичные проекты запущены в Италии и Швеции.

В России первый этап строительства сети на базе PLC-технологии выполнялся компанией "Спарк" и завершился в октябре 2005 г. На тот момент сеть включала в себя более 750 узлов доступа, расположенных в жилых домах. Все узлы доступа объединены магистральной оптической сетью Gigabit Ethernet. В 2006 г. стартовал пилотный проект по вводу в эксплуатацию технологии PLC в районе Южное Тушино, а в 2007 г. началось активное строительство сети и подключение абонентов.

Невысокая плата за доступ в Интернет обеспечивает хорошую конкурентоспособность, но качество порой вызывает нарекания потенциальных и настоящих абонентов (если судить по многочисленным дискуссиям на форумах). Например, пользователи сетуют на проблему возможности подключения к Сети только через определенную розетку в квартире, что не всегда бывает удобно абоненту, а также на снижение скорости при включении электроприборов. Это обусловлено общим состоянием электропроводки квартиры, но такие проблемы решаются специалистами провайдера. К тому же во избежание каких-либо проблем рекомендуется включать пользовательское устройство в отдельную розетку. Тем не менее эксперты телекоммуникационной отрасли придерживаются невысокой оценки потенциала развития PLC-сетей. Причиной этого является сама технология. Для передачи данных от компьютера к компьютеру специально разрабатывалась технология Ethernet, в результате при ее использовании стоимость оконечного оборудования самая низкая, да и скоростные характеристики наилучшие. Любые же попытки приспособить для передачи данных среду, изначально к тому не предназначенную, приводят к более высокой стоимости оборудования и к худшим техническим характеристикам. Это относится и к телефонному медному проводу (коммутируемые модемы или ADSL), и к силовым сетям (технология PLC).

Так называемая "проблема последней мили", о которой так много говорят последнее время, породила множество решений. Однако у большей части таких решений есть один общий недостаток – все они требуют прокладки проводов и кабелей. Наверное, нет смысла говорить о том, какие сложности и трудности это подчас вызывает – очень часто стоимость прокладки кабеля составляет большую часть стоимости наладки сети. Более того, существует ряд случаев, при которых прокладка новых кабелей невозможна или крайне нежелательна – ярким примером такой неприятной ситуации является недавно законченный ремонт, сразу после которого неожиданно выясняется, что необходимо прокладывать дополнительные провода для компьютерных сетей.

Поэтому особый интерес всегда вызывали те технологии, которые позволяли обойтись без прокладки новых кабелей. На данный момент существует два успешных подхода к этой проблеме – это беспроводные сети Wi-Fi и технологии PLC. Если про беспроводные сети сейчас написано достаточно много, то про технологии PLC доступно гораздо меньше информации.

Технологии PLC позволяют построить компьютерные локальные сети на основе существующих линий электропередач. Так, применяя технологии PLC, вы можете построить небольшую домашнюю локальную сеть, используя ту электрическую проводку, которая уже проложена.

На самом деле, способы передачи информации при помощи электрической проводки существовали давно. Одним из них являются всем известные советские репродукторы (которые также часто неверно называют радиоточками). В основе различных технологий лежит достаточно простая идея разделения сигнала – если бы каким-то образом можно было бы одновременно передавать несколько сигналов по одному физическому каналу, то таким образом можно было бы увеличить общую скорость передачи данных. Этого можно добиться при помощи модуляции (к тому же, модулированный сигнал устойчив к помехам), и при разных способах модуляции на одних и тех же физических каналах передачи данных можно добиться разной скорости передачи данных.

На первый взгляд, рецепт удачной технологии PLC может показаться простым – достаточно выбрать такой способ модуляции, который мог бы обеспечить наиболее скоростную передачу данных, и современное средство связи готово. Однако те способы модуляции, которые обеспечивают наиболее плотную упаковку сигнала, требуют сложных математических операций, и для того, чтобы их можно было применять в технологиях PLC, необходимо применение быстрых сигнальных (DSP) процессоров.

Процессор цифровой обработки сигналов (digital signal processor - DSP) - это специализированный программируемый микропроцессор, предназначенный для манипулирования в реальном масштабе времени потоком цифровых данных. DSP-процессоры широко используются для обработки потоков графической информации, аудио- и видеосигналов.

Таким образом, развитие PLC-технологий упиралось в темпы развития DSP процессоров, и как только последние стали справляться с продвинутыми алгоритмами эффективной модуляции, появились новые технологии организации таких сетей. На данный момент в PLC-технологиях используется OFDM-модуляция, которая позволяет добиваться большой скорости передачи данных и хорошей устойчивости сигнала к помехам.

Широкополосный доступ в Интернет;

Домашние и офисные компьютерные сети;

VoIP – IP-телефония;

Высокоскоростная аудио- и видеопередача;

Офисное и домашнее (в том числе через Internet) видеонаблюдение, построение систем удаленного видеомониторинга;

Построение каналов передачи цифровых данных для промышленной и домашней автоматизации (АИИС КУЭ, АСУ ТП(SCADA), СКУД);

Системы безопасности (пожарно-охранная сигнализация).

От применяемых решений для построения сетей доступа во многом зависит успех бизнеса телекоммуникационных операторов, а также эффективное функционирование ведомственных и корпоративных сетей связи.

Волоконно-оптические линии связи обеспечивают передачу данных с большой скоростью, но до массового пользователя они пока не доходят, находя широкое применение, как правило, в корпоративном секторе.

На массовом рынке абонентского доступа сегодня наиболее востребованной считается технология xDSL, которая обеспечивает пользователям доступ к сети Интернет и другим инфокоммуникационным услугам по существующим телефонным линиям. Определенную долю в этом сегменте занимают также такие технологии как широкополосный беспроводный радиодоступ и спутниковый доступ, доступ по сетям кабельного телевидения, пакетная передача данных в сетях сотовой связи 2.5G/3G (GPRS/EDGE/UMTS, CDMA 2000 1X/ EV-DO).

Такие факторы, как широкая распространенность электрических сетей 0,2¸0,4 кВ, отсутствие необходимости дорогостоящего строительства кабельной канализации, пробивки стен и прокладки кабелей связи и пр. стимулируют исследование силовых сетей как альтернативной среды передачи данных и развитие еще одной технологии широкополосного доступа - по электросетям.

Было разработано оборудование PLC первого и второго поколений. Достигнутая предельная скорость передачи данных не превышала 10-14 Мб/с. Реальная же скорость передачи данных в тестовых сетях PLC с применением этого оборудования отличалась на порядок и составляла 1-2 Мб/с. Кроме этого, абонентское оборудование PLC имело сравнительно высокую стоимость, а для электролиний, "уплотненных" PLC, был характерен высокий уровень электромагнитных излучений, обусловленный работой PLC-аппаратуры.

Поэтому до недавнего времени технология PLC применялась для коммерческого предоставления телекоммуникационных услуг в ограниченном масштабе, будучи неконкурентоспособной по отношению к другим технологиям, и прежде всего xDSL. Однако последние достижения микроэлектроники, позволившие создать системы PLC третьего поколения, которые обеспечивают скорость передачи данных до 200 Мб/с при использовании стандартных электролиний, открывают новые возможности для реализации широкополосного доступа.

Современные PLC системы, ориентированные на решение задачи широкополосного абонентского доступа, в основном используют две технологии. В первой применяется сигнал с т.н. расширением спектра (spread spectrum - SS), существенно повышающий помехоустойчивость передачи. При использовании SS-модуляции мощность сигнала распределяется в широкой полосе частот, и сигнал становится незаметным на фоне помех. На принимающей стороне значимая информация выделяется из шумоподобного сигнала с использованием уникальной для данного сигнала псевдослучайной кодовой последовательности. С помощью различных кодов можно осуществлять передачу сразу нескольких сообщений в одной широкой полосе частот. Описанный принцип лежит в основе метода множественного доступа с кодовым разделением каналов (CDMA). Отметим, что помимо помехоустойчивости SS-модуляция обеспечивает высокий уровень защиты информации. В качестве базовой используется QPSK-модуляция.

Вторая технология основана на ортогональном частотном уплотнении с одновременной передачей сигналов на нескольких несущих (OFDM -Orthogonal Frequency Division Multiplex). Этот метод также гарантирует высокую достоверность передачи и устойчивость к искажениям сигнала.

Дальнейшим развитием второго варианта стала технология, предложенная американской фирмой Intellon. Здесь применен модифицированный OFDM-метод, в котором исходный поток данных разбивается на пакеты, и каждый из них передается в диапазоне частот 4,3-20,9 МГц с использованием относительной фазовой модуляции на собственной поднесущей (DBPSK или DQPSK - Differential Quadrature Phase Shift Keying, дифференциальная квадратурная фазовая модуляция со сдвигом). Максимальная информационная скорость передачи достигает десятков Мбит/с.

Технология PLC реализует принцип множественного доступа “точка - множество точек”. Локальная трансформаторная подстанция поставляет определенному числу зданий электроэнергию и, одновременно, обеспечивает подключенным пользователям услуги передачи данных, IP-телефонии и др.

Основным оконечным оборудованием следует считать PLC-модем, который обычно реализует интерфейс для связи с ПК: USB, либо – Ethernet. Таким образом, модем подключается к источнику информации – розетке 220В, а на выходе по соответствующему интерфейсу к ПК. Возможен вариант, когда параллельно с ПК подключается телефон, поддерживающий режим VoIP.

Типовая функциональная схема и основные компоненты PLC-модема представлены на рис. 1.1.

Рис. 1.1. Компоненты PLC-модема

Соединение с сетью Интернет в этой инновационной технологии называется Broadband over power lines (BPL).

В отличие от DSL-соединения, посредством домашней сети технология позволяет большему количеству людей иметь широкополосный доступ в Интернет.

Технология PLC – самый дешевый способ создания домашней сети, так как не требует от пользователя установки дополнительных кабелей питания и позволяет подключить к сети PLC жителей целого квартала. Одно мастер-устройство способно обеспечить доступ в Internet через сеть PLC для 500 пользователей. Для этого пользователи должны иметь у себя в квартирах адаптерные устройства, содержащие модемы PLC.

Конечно же, больше всего успешных проектов по организации широкополосного доступа через электросети реализовано в США – на родине Интернета. Известны такие компании как New Visions(Нью-Йорк), Communications Technologies (шт. Виргиния), Cinergy (шт. Огайо).

В Германии PLC предлагают Vype; Piper-Net и PowerKom; в Австрии – Speed-Web; в Швеции – ENkom; в Нидерландах – Digistroom; в Шотландии – Broadband.

В 2005 году в Российской Федерации началось развертывание сетей доступа в Интернет через бытовые электрические сети по технологии PLC.

Доступ в Интернет эволюционирует, и скоро даже у себя на даче, где нет телефонной и кабельной линий, можно будет подключиться к Интернет.

В большинстве случаев системы PLC классифицируются в соответствии с напряжением силовой сети, на которой они используются, и зоной действия (территорией):

применяемые на высоковольтных линиях (HV);

применяемые на средневольтных линиях (MV);

применяемые на низковольтных линиях (LV):

последняя миля;

внутри здания;

внутри помещения (квартиры).

PLC включает B, обеспечивающий передачу данных со скоростью более 1 Мбит в секунду, и NPL с намного меньшими скоростями передачи данных.

При передаче сигналов по бытовой электросети могут возникать большие затухания в передающей функции на определенных частотах, что может привести к потере данных. В технологии PowerLine предусмотрен специальный метод решения этой проблемы – динамическое включение и выключение передачи сигнала (dynamically turning off and on data-carrying signals). Суть данного метода заключается в том, что устройство осуществляет постоянный мониторинг канала передачи с целью выявления участка спектра с превышением определенного порогового значения затухания. В случае обнаружения данного факта, использование этих частот на время прекращается до восстановления нормального значения затухания.

Существует также проблема возникновения импульсных помех (до 1 микросекунды), источниками которых могут быть галогенные лампы, а также включение и выключение мощных бытовых электроприборов, оборудованных электрическими двигателями.

Какими бы оптимистичными ни были результаты работы экспериментальных PLC-сетей за рубежом, в нашей стране эта технология рискует столкнуться с рядом трудностей. Отечественная электрическая проводка выполнена в основном из алюминия, а не из меди, которая нашла применение в большинстве стран мира. Алюминиевые провода обладают худшей электропроводностью, что приводит к более быстрому затуханию сигнала. Другая проблема заключается в том, что у нас до сих пор не решены основные вопросы нормативно-правового регулирования использования таких технологий. Впрочем, последнее актуально и для Запада. Главным фактором, сдерживающим быстрое развитие высокоскоростных систем PLC, является отсутствие стандартов на широкополосные PLC-системы и, как следствие, большой риск несовместимости с другими службами, использующими те же или близкие диапазоны частот. В 2001 г. международный консорциум HomePlug Powerline Alliance принял отраслевой стандарт для построения домашних сетей через линии бытовой электропроводки - спецификацию HomePlug 1.0. Но этот стандарт регламентирует построение "домашних" сетей, то есть сетей в пределах одной квартиры (коттеджа). Полноценный же стандарт для широкополосных PLC пока не разработан.

Основными организациями и сообществами, занимающимися вопросами стандатизации различных аспектов этой технологии, являются IEEE, ETSI, CENELEC, OPERA, UPA и HomePlug Powerline Alliance.

IЕЕЕ объявил о создании группы, которая будет заниматься разработкой стандарта ВPL. Проект носит наименование IEEE P1675, «Standard for Broadband over Power Line Hardware».

Помимо IEEE P1675 существуют еще три направления:

IEEE P1775, инициированное с целью регламентирования PLC-оборудования, требований по электромагнитной совместимости, методов тестирования и измерения;

IEEE P1901, «Standard for Broadband over Power Line Networks: Medium Access Control and Physical Layer Specifications», обеспечивающее описание физического уровня и уровня доступа к среде для всех классов ВPL-устройств;

IEEE BPL Study Group, «Standardization of Broadband Over Power Line Technologies», обеспечивающее создание новых групп, связанных с BPL.

Европейский институт по стандартизации в области телекоммуникаций сформировал технический комитет ETSI Technical Committee Power-Line Telecommunications (ТС PLT), отвечающий за стандартизацию в области PLC.

CENELEC - некоммерческая организация, состоящая из Национальных электротехнических комитетов государств-членов ЕС, которая является самой значительной организацией в ЕС в области стандартизации электромагнитных полей. Применительно к PLC, CENELEC выполняет создание спецификаций PLC для физического уровня и подуровня доступа к среде передачи; принят соответствующий стандарт EN55022 .

Консорциум Open PLC European Research Alliance (OPERA) создан в 2004 году в рамках европейской программы Broadband for All по продвижению технологий скоростного интернет-доступа. Работа OPERA состоит из двух этапов, на выполнение каждого из которых отведено два года.

Основным инициатором и источником финансирования является Европейская комиссия. Суммарный бюджет составляет более 20 миллионов евро, значительная часть сумм выделяется в рамках программы FP6. Завершение проекта OPERA предполагается в 2008 году. Всего в проекте участвуют более 30 компаний и исследовательских институтов из 12 стран.

Подготовленные к настоящему моменту спецификации OPERA охватывают уровни PHY, MAC и оборудование передачи данных по сетям электроснабжения.

Ассоциация UPA была официально анонсирована в декабре 2004 года. Основной декларируемой целью UPA является пропаганда технологий PLC и демонстрация правительствам стран и индустриальным лидерам перспектив ее масштабного использования. UPA занимается разработкой стандартов и регулирующих документов для обеспечения быстрого развития рынка PLC. Обеспечивает участников рынка сведениями об открытых стандартах, основанных на совместимости и безопасности.

Для широкого внедрения и развития технологии HomePlug (одна из первых технологий передачи по силовым линиям), стандартизации и совместимости устройств различных изготовителей, использующих эту технологию, в 2000 году был организован международный индустриальный альянс HomePlug Powerline. Сегодня более 80 фирм являются спонсорами, участниками альянса, а также придерживаются его рекомендаций. Среди них такие известные фирмы как: Motorola, France Telecom, Philips, Samsung, Sony, Matsushita, Sanyo, Sharp, Panasonic и многие другие. Зарегистрированный знак альянса «HomePlug Certified» на продукции любого изготовителя означает, что данное устройство удовлетворяет всем требованием стандарта HomePlug Powerline и полностью совместимо с аналогичными устройствами другого изготовителя.

В основе первого стандарта HomePlug Powerline Specification 1.0 лежит технология Power Package™, предложенная компанией Intellon (USA) и принятая в качестве стандарта членами HomePlug Powerline Alliance. Принятые к настоящему моменту и находящиеся в стадии подготовки стандарты представлены в табл. 1.1.

Таблица 1.1. Основные стандарты HomePlug Powerline Alliance

Наименование Дата принятия Примечание
HomePlug 1.0 Июнь 2001 г. Определяет технологию для обеспечения передачи данных со скоростью до 14 Мбит/с
HomePlug 1.0 Turbo Является развитием спецификации 1.0 с обеспечением максимальной скорости передачи данных до 85 Мбит/с
HomePlug AV Определяет технологию PLC со скоростью передачи до 200 Mбит/с. Спецификация предусматривает обеспечение качества обслуживания, необходимого для передачи аудио- и видео потоков. Шифрование - 128-разрядное по алгоритму AES
HomePlug Command and Control

Сентябрь

Определяет управление и управление устройствами HomePlug
HomePlug BPL Находится в разработке

Сегодня разработки в области PLC ведут несколько сотен компаний, занимающихся как выпуском комплектов микросхем, так и созданием на их базе законченных устройств. Вот лишь некоторые из игроков отрасли: ABB, Adaptive Networks, Alcatel, Ambient Corporation, Amperion, Ascol, Cisco Systems, Cogency, Corinex, Current Technologies, DataSoft, DefiDev, DS2 (Design of Systems on Silicon), Echelon, Eicon, Electricom, Enikia, Ericsson Austria AG, HP, llevo, Intellon, Krone AG, Linksys, Lucent Technologies, Metricom Corporation, Mitsubishi, Netgear, Northern Telecom, Nor.Web, Philips, PowerNet, PowerWAN, Schlumberger, Schneider Electric, Sumitomo Electric Industries, Telkonet.


Безусловным лидером в производстве ИМС (чипов) для PLC-систем третьего поколения является компания Design of Systems on Silicon Corporation - DS2 (Испания). Она основана в 1998 г и производит функционально полный набор продуктов, позволяющий реализовать законченное решение для задачи широкополосного доступа на базе PLC. Одна из первых DS2 представила в конце 2003 г ряд ИМС третьего поколения, обеспечивающие скорость обмена до 200 Мб/с. Пока продукты DS2 не поддерживают стандарт HP v.AV.

Основные ИМС DS2:

DSS9001: на базе данной ИМС могут быть реализованы PLC-модемы и аппаратура класса In-Door;

DSS9002: на базе данной ИМС могут быть реализованы Излучатели и Повторители;

DSS9003: Специализированная ИМС для сопряжения электросети и ВОЛС;

DSS9010: Специализированная ИМС для высокоскоростных решений

Реализация PLC-системы на основе продуктов DS2 представлена на рис. 1.2.

Рис. 1.2. Реализация PLC-системы на основе продуктов DS2.

Другим лидером следует признать компанию Intellon Corporation (США), которая была одним из соучредителей альянса HomePlug. Для спецификации HomePlug v.1.0 Intellon подготовила следующие ИМС: INT51X1, INT5200, INT5500CS. В сентябре 2002 г. компания представила первый в мире сертифицированный модуль HomePlug 1.0 - устройство RD51X1-AP для организации точки доступа в Internet по технологии PLC. В ноябре 2005 г компания объявила о выпуске 3-х миллионного изделия для сетей PLC.

Для широкополосного доступа (HomePlug v.AV specification) Intellon подготовила набор ИМС INT6000. В августе 2005 г. было объявлено, что инвестиционное подразделение Motorola Ventures начало инвестировать работы компании Intellon по развитию набора ИМС INT6000. Первые поставки ожидаются во 2 кв.2006 г.

Разработки компании Intellon реализуют технологию PowerPacket, использующую метод эффективной модуляции спектра, который дает возможность передавать данные по линиям электропередачи на очень высоких скоростях. Скорость передачи данных может достигать 100Мб/с. PowerPacket является системой с характеристиками, которые позволяют ей адаптироваться к среде с сильным многолучевым отражением, сильной узкополосной интерференцией, импульсивным помехам без выравнивания.

Компания SPiDCOM Technologies (Франция, www.spidcom.com) один из ведущих разработчиков элементной базы для решений PLC/BPL (BPL – broadband powerline, аббревиатура используемая в США для обозначения PLC). Последняя разработка компании – ИМС типа SPC200 обеспечивает скорость передачи порядка 220 Мб/с. Ее серийный запуск в производство начался в марте 2005 г. Вариант SPC200, совместимый со стандартом HomePlug v.AV, поступит в продажу во 2 кв. 2006г. ИМС SPC200 использует диапазон 2 – 30 МГц, разделенный на 7 рабочих полос.

Израильская компания Yitran Communications Ltd активно сотрудничает с HomePlug Powerline альянсом. В результате проведенных исследований в марте 2006 г решение Yitran было выбрано в качестве базовой технологии при подготовке стандарта HomePlug v.AV (раздел «Команды и управление»).

Компания подготовила две ИМС третьего поколения: ITM1 и ITС1. Они позволяют реализовать пиковую скорость до 200 Мб/с. Структурная схема устройства связи на базе ИМС ITM1/ITC1 приведена на рис. 1.3.

Рис. 1.3. Структурная схема устройства связи на базе ИМС ITM1|ITC1.

Фирма Yitran Сommunications разработала и запатентовала технологию дифференциальной кодовой манипуляции (DCSK), позволяющую создавать недорогие сетевые компоненты с высокими техническими характеристиками. Детали DCSK не известны; сообщается лишь, что в ее основе лежат независимые от физической среды передачи методы адаптивной SS-модуляции в полосе частот 4-20 MГц с турбо-компенсацией и сжатием кода.

Аппаратные компоненты (трансиверы), созданные на основе DCSK, обеспечивают значительно более высокие скорость передачи, помехоустойчивость и защиту информации, чем существующие CEBus-трансиверы, при заметно меньшей стоимости устройств. Анонсировано несколько изделий, в частности ITM1 (скорость передачи данных – до 2,5 Мбит/с) и ITM10 (скорость передачи данных – до 12 Мбит/с).

Компания XELine (Ю.Корея) разрабатывает как ИМС, так и оборудование для PLC-решений. Компания предлагает ИМС третьего поколения типа XPLC40A, которая обеспечивает скорость доступа до 200 Мб/с.

Другое изделие Xeline – ИМС типа XPLC21 обеспечивает скорость доступа до 24 Мб/с. На его основе могут быть реализованы Излучатель, повторитель и непосредственно PLC-модем. Данная ИМС реализована на базе процессора ARM9. Используемый частотный диапазон – 2-23 МГц. Структурная схема XPLC21 приведена на рис. 1.4.

Рис.1.4. Структурная схема ИМС типа XPLC21

Остальные поставщики пока находятся в стадии тестирования PLC-ИМС третьего поколения, продолжая выпуск аппаратуры второго поколения и поколения 2.5, т.н. стандарт HomePlug v.1.turbo (скорость до 85 Мб/с).

На основе рассмотренных выше наборов ИМС вендоры выпускают PLC-оборудование и для сегмента In-Door, и для сегмента комплексных решений (для доступа на последней миле).

Ниже мы укажем производителей оборудования класса In-Door третьего поколения.

Германская компания devolo AG выпускает линейку PLC-продуктов dLAN, которые относятся к классу In-Door и позволяют создать локальную сеть внутри помещения на основе технологии PLC.

В марте 2006 г компания devolo AG объявила, что она подготовила к выпуску новую продуктовую линейку dLAN 200, которая обеспечивает скорость передачи информации до 200 Мб/с (HomePlug v.AV) и реализована на базе ИМС компании Intellon.

Один из лидеров в сегменте аппаратуры локальных сетей, компания NETGEAR (США) проявила интерес и к сегменту PLC-адаптеров - в феврале 2006 г NETGEAR заключила соглашение с компанией DS2 о начале совместных работ и поставке ИМС третьего поколения, которые позволят освоить производство PLC-устройств, поддерживающих скорость до 200 Мб/с. Начало поставок новой продукции намечено на третий квартал 2006 г.

Компания ELCON (Германия) в марте 2006 г анонсировала выпуск модели ELCONnect P-200, которая реализована на базе ИМС компании DS2, поддерживает интерфейс Ethernet и обеспечивает скорость обмена до 200 Мб/с.

Таблица 1.2. Технические характеристики наборов микросхем D52

Конструктив DSS9011 DSS9010 DSS9001 DSS9002 DSS9003 DSS7700
PBGA196 PBGA196 PBGA196 PBGA256 PBGA304 QFN84
Интерфейсы
GIMMI 2
MII 1 1 2
TDM 1 1
SPI 1 1 1 1 1 1
UART 1 1 1 1 1
GPIO Pins 9 9 9 9 9
Сетевые возможности
MAC- адреса Нет 32 64 1024 256k Нет
QoS и широковещание Есть Есть Есть Есть Есть Нет
CoS Нет Нет Есть Есть Есть Нет
VLAN 1 32 32 32
Функциональное назначение устройств
CPE + + + +
Повторитель (repeater) + + +
Головное устройство (head end) + + +

Таблица 1.3. Позиционирование изделий DS2

Сети Smart Power представляют собой интеллектуальные сети питания завтрашнего дня, которые стали основой технологии «Smart Grid» в промышленности. Концепция основана на интеллектуальном управлении системами подачи питания и обмена данными между оборудованием предприятия, что требует разработки новых принципов администрирования энергетических сетей. Идея компании HARTING: каждое устройство становится абонентом сети вне зависимости от того, подключен ли к нему кабель данных или только кабель питания.

ЗАО «ХАРТИНГ», г. Москва

В рамках управления предприятием разрабатывается общая концепция развития коммерческих и производственных зданий, которая позволяет добиться постоянного снижения производственных и эксплуатационных расходов и обеспечить готовность оборудования к техническому обслуживанию. Главная цель – получить «экологически чистое» производство, а также увеличить производительность и соответственно рентабельность всего предприятия путем снижения расходов на энергоснабжение, увеличения эффективности распределения энергии, оптимизации пиковых нагрузок или оптимизации энергопотребления с помощью программных средств, а также путем использования современной концепции распределения энергии в составе системы управления энергетическими ресурсами предприятия по стандарту DIN EN 16001. Для достижения поставленной цели требуется единая и универсальная система связи, объединяющая сети питания и сети передачи данных. Для крупных потребителей электроэнергии будет создана система энергетического мониторинга, которая объединит функции управления процессами подачи электроэнергии, управления энергопотреблением и предоставления пользователям полной информации. Качественная связь – основа эффективности. Обмен данными между промышленными устройствами до сих пор считается всего лишь вспомогательной функ­цией. Однако если промышленные устройства работают изолировано, вне системы обмена данными, дальнейшее развитие и повышение эффективности промышленных процессов невозможно. Отсутствие диагностики отрицательно влияет на готовность оборудования к техническому обслуживанию, а повышение энергоэффективности при эксплуатации оборудования невозможно без эффективной системы идентификации потребителей электроэнергии. Обе задачи решаются только при использовании сети передачи данных, которая позволяет «увидеть» каждое работающее устройство и управлять им.

Энергоснабжение в промышленности и типы сигналов связи

Работа промышленных уст­ройств связана с тремя жизненно важными «артериями» – это линии подачи питания, линии передачи данных и линии передачи сигналов управления. Устройства, потребляющие большую мощность, постоянно подключены к силовой линии 400 В, однако менее 50 % из них способны передавать и принимать информацию. Для эффективного администрирования подобных устройств каждое из них должно быть интегрировано в сеть питания в качестве оконечного устройства.

Отсюда вытекают требования к сетям питания. Когда устройство подключается к сети питания, должно немедленно распознаваться само устройство и значение потребляемой им мощности, а также должна быть возможность отключения нагрузки в соответствии с выбранным алгоритмом. Для реализации перечисленных функций требуется канал с достаточно узкой полосой пропускания.

Автоматизация, напротив, требует линий связи, способных передавать данные на высокой скорости в режиме реального времени. Например, оптические линии автоматической диагностики работают в достаточно широком частотном диапазоне.


Организация линий передачи данных в сети питания

Чтобы снизить затраты на монтаж, а также для реализации базовых функций управления сетью питания, компания HARTING выбрала технологию передачи данных по кабелям электропитания. Однако, несмотря на то что сети объединены, они должны работать так, как работали бы сети, организованные с помощью отдельных кабелей. Поэтому в качестве основы для сети питания был выбран стандарт Ethernet, позволяющий добавлять в сеть новые функции в зависимости от требований пользователей. Если в традиционную сеть питания интегрировать функцию интеллектуального управления, она становится сетью smartPowerNet. В этом случае объединенные в сеть устройства начинают играть ключевую роль, поскольку именно они определяют требуемую для промышленности топологию сети. Следовательно, элементы сети smartPowerNet формируют основу сетевой структуры: компания HARTING сделала соответствующие выводы и стала первым предприятием, разработавшим устройства для сетей электропитания с функцией передачи данных.


Использование стандартной сети Ethernet

Управление сетью Ethernet осуществляется через управляемые компоненты сети.

Вполне логично, что функции управляемых коммутаторов могут взять на себя устройства сети smartPowerNet. Одна из основных функций управления сетью – это визуализация топологии и подключенных к сети оконечных устройств. Если для сети питания с функцией передачи данных выбран стандарт Ethernet, топология сети передачи данных повторяет топологию сети питания, так как для передачи данных и питания используется один и тот же кабель. Следовательно, для администрирования такой комплексной сети можно использовать стандартные функции Ethernet, выбор которых достаточно широк. На основе такой концепции возможно создать универсальное решение. Система открыта и масштабируема, поскольку подключение дополнительных линий связи расширяет частотный диапазон системы, не накладывая никаких ограничений на совместимость.


Функции управления комплексной сетью

В настоящий момент востребованы решения, которые поддерживают топологии, предусматривающие использование линий передачи данных и питания в различных комбинациях и позволяющие передавать данные об энергопотреблении, например, в диспетчерскую, без прокладки дополнительных кабелей данных, а также осуществлять непрерывный контроль состояния системы без установки и конфигурирования дополнительных устройств. В такой сети очень важна функция автоматического распознавания топологии сети в момент первого включения и во время работы сети, а также отображение данных о системе распределения питания. Устройства, распределяющие и потребляющие электроэнергию, распознаются при включении сети и отображаются на дисплее промышленного ПК или главной рабочей диспетчерской станции вместе с текущими показателями энергопотребления. Интеграция системы управления нагрузкой позволяет избежать перегрузок, система срабатывает при превышении пиковых значений, предварительно установленных для нагрузки. Поэтому целесообразно заранее определить потребителей, которых можно безболезненно отключить при общей перегрузке сети.


Контроль состояния системы

Функция контроля состояния нагрузки в системе распределения электроэнергии, а также нагрузки, подключенной к станку или другому оборудованию, основана на регулярном считывании и последующем анализе соответствующих данных. Она служит для обеспечения безопасности и эффективности работы системы. В дополнение к измерению сигнала на выходах Т-образных отводов производится непрерывный контроль состояния всей распределительной сети и каждого отдельного элемента smartPowerNet.

Любое изменение параметров сети и показателей качества работы регистрируется и анализируется. Так, например, можно мгновенно определить такие неисправности, как падение напряжения, обрыв кабеля или неправильное подключение до отказа всей системы.


Рис. Применение технологии «Smart Grid» в промышленности значительно повысит эффективность

Энергопотребление

Для снижения расходов на электроэнергию нужны данные обо всех потребителях. Для этого в каждый элемент сети smartPowerNet, в каждое распределительное устройство или электрошкаф встроена измерительная интегральная схема, которая считывает и записывает данные, используемые для расчета энергопотребления. Самым простым средством снижения энергопотребления является отключение потребителей. Стандартные входы/выходы администрируемых распределительных устройств позволяют отключать лишние устройства с помощью ПЛК без использования дополнительных сетевых протоколов.


Отображение данных

Обработка всех результатов измерений производится на промышленном ПК. Данные сети smartPowerNet считываются через стандартные коммуникационные интерфейсы, затем обрабатываются и архивируются.

Существенные отклонения результатов измерений от нормальных значений регистрируются, анализируются, записываются и отображаются на промышленном ПК или в диспетчерской в соответствии со степенью важности. Рассчитывается, например, энергия, потребленная всей системой или каждой выходной цепью. Отображается значение потребленной электро­энергии относительно номинального значения и выдается предупреждение при перегрузке. Также возможен графический анализ потребления электроэнергии и составление графиков энергопотребления на достаточно долгий срок.

Понравилась статья? Поделитесь ей
Наименование Назначение Примечание
DSS9010 Высокоскоростные домашние мультимедийные приложения Управление QoS. Функциональность моста 802.1d с обслуживанием до 32-х МАС-адресов
DSS9011 Бюджетное решение для передачи аудиоинформации
DSS9001 Домашние приложения с раширенными возможностями и инфраструктура PLC начального уровня Поддержка до 64-х МАС-адресов. Ориентирован на использование в составе оконечного клиентского оборудования (СРЕ). Имеет интегрированный порт VoIP
DSS9002 Оборудование инфраструктуры доступа Поддержка до 1024-х МАС-адресов. Может использоваться в: 1) модемах и повторителях низковольтных сетей; 2) шлюзах между средневольтными и низковольтными сетями; 3) шлюзах отдельных квартир или зданий
DSS90D3 Оборудование инфраструктуры доступа с расширенными возможностями и оптические шлюзы для городских (Metro) сетей Поддержка до 262144-х МАС-адресов. Обеспечивает быструю реконфигурацию с использованием оптимизированного протокола Spanning Tree
DSS7700 Аналоговой блок для головного устройстаз , [А/м]

ЭНЕПД - предельно-допустимая энергетическая нагрузка составляющей напряженности электрического поля в течение раб. дня [(В/м)2×ч]

ЭННПД - предельно-допустимая энергетическая нагрузка составляющей напряженности магнитного поля в течение раб. дня [(А/м)2×ч]

Нормируемым параметром электромагнитного поля в диапазоне частот 300 МГц -300 ГГц является предельно-допустимое значение плотности потока энергии.


ППЭПД - предельное значение плотности потока энергии [Вт/м2],[мкВт/см2]

К - коэффициент ослабления биологических эффектов

ЭНППЭПД - предельно-допустимая величина эн. нагрузки [В/м2×ч]

Т - время действия [ч]

Пред. величина ППЭпд не более 10 Вт/м2; 1000 мкВт/см2 в производственном помещении. В жилой застройке при круглосуточном облучении в соответствии с СН Þ ППЭпд не более 5 мкВт/см2.

Уменьшение составляющих напряженностей электрического и магнитного полей в зоне индукции, в зоне излучения - уменьшение плотности потока энергии, если позволяет данный технологический процесс или оборудование.

Защита временем (ограничение время пребывания в зоне источника электромагнитного поля).

Защита расстоянием (60 - 80 мм от экрана).

Метод экранирования рабочего места или источника излучения электромагнитного поля.

Рациональная планировка рабочего места относительно истинного излучения электромагнитного поля.

Применение средств предупредительной сигнализации.

Применение средств индивидуальной защиты.

Человек дистанционно не может определить, находится ли установка под напряжением или нет. Ток, который протекает через тело человека, действует на организм не только в местах контакта и по пути протекания тока, но и на такие системы как кровеносная, дыхательная и сердечно-сосудистая.

Возможность получения электротравм имеет место не только при прикосновении, но и через напряжение шага и через электрическую дугу.

Эл. ток, проходя через тело человека оказывает термическое воздействие, которое приводит к отекам (от покраснения, до обугливания), электролитическое (химическое), механическое, которое может привести к разрыву тканей и мышц; поэтому все электротравмы делятся на местные и общие (электроудары).

Местные электротравмы:

электрические ожоги (под действием электрического тока);

электрические знаки (пятна бледно-желтого цвета);

металлизация поверхности кожи (попадание расплавленных частиц металла электрической. дуги на кожу);

электроофтальмия (ожог слизистой оболочки глаз).

1 степень: без потери сознания

2 степень: с потерей

3 степень: без поражения работы сердца

4 степень: с поражением работы сердца и органов дыхания

Крайний случай - состояние клинической смерти (остановка работы сердца и нарушение снабжения кислородом клеток мозга). В состоянии клинической смерти находятся до 6-8 мин.

Ι. Прикосновение к токоведущим частям, находящимся под напряжением

ΙΙ. Прикосновение к отключенным частям, на которых напряжение может иметь место:

в случае остаточного заряда

в случае ошибочного включения электрической установки или несогласованных действий обслуживающего персонала

в случае разряда молнии в электрическую установку или вблизи прикосновение к металлическим не токоведущим частям или связанного с ними электрического оборудования (корпуса, кожухи, ограждения) после перехода напряжения на них с токоведущих частей (возникновение аварийной ситуации - пробой на корпусе)

ΙΙΙ. Поражение напряжением шага или пребывание человека в поле растекания электрического тока, в случае замыкания на землю

ΙV. Поражение через электрическую дугу при напряжении электрической установки выше 1кВ, при приближении на недопустимо-малое расстояние

V. Действие атмосферного электричества при газовых разрядах

VΙ. Освобождение человека, находящегося под напряжением

Напряжение прикосновения - это разность потенциалов точек электрической цепи, которых человек касается одновременно, обычно в точках расположения рук и ног.

Напряжение шага - это разность потенциалов j1 и j2 в поле растекания тока по поверхности земли между точками, расположенными на расстоянии шага (» 0,8 м).

заземление;

зануление;

защитное отключение.

В нашем случае используется искусственное защитное заземляющее устройство

Заземлению подлежат вся аппаратура, а также стойки, в которой эта аппаратура находится. По периметру комнаты, где располагается аппаратура, должен быть проложен контур заземления с целью защиты людей и аппаратуры от статического электричества.

Защитное заземление следует выполнять в соответствии с ПУЭ и СНиП 3.05.06-85 («Электротехнические устройства»).

Случаи поражения человека электрическим током возможны лишь при замыкании электрической цепи через тело человека, или, иначе говоря, при прикосновении человека не менее чем к двум точкам цепи, между которыми существует некоторое напряжение.

Возникновение электротравмы в результате воздействии электрического тока или электрической дуги, может быть связано:

а) однофазным (однополюсным) прикосновением неизолированного от земли (основания) человека к неизолированным токоведущим частям электроустановок, находящихся под напряжением;

б) с одновременным прикосновением человека к двум токоведущим неизолированным частям (фазам, полюсам) электроустановок, находящихся под напряжением;

в) с приближением на опасное расстояние человека к неизолированным токоведущим частям электроустановок, находящихся под напряжением;

г) с прикосновением человека, неизолированного от земли (основание) к металлическим корпусам (корпусу) электрооборудования, оказавшегося под напряжением;

д) с включением человека, находящегося в зоне растекания тока замыкания на землю, на «напряжение шага»;

е) с действием атмосферного электричества при грозовых разрядах;

ж) с действием электрической дуги;

з) с освобождением человека, находяще1-ося под напряжением.

Тяжесть электротравм, оцениваемая величиной тока, проходящего через тело человека, и напряжением прикосновения, зависит от ряда факторов: схемы включения человека в цепь; напряжения сети, схемы самой сети, степени изоляции токоведущих частей от земли, а также величины емкости токоведущих частей относительно земли.

Наиболее широко используют установки напряжением до 1000 В с глухозаземленной нейтралью трансформатора или генератора. Четырехпроводная сеть с глухозаземленной нейтралью позволяет иметь два рабочих напряжения: линейное в 380 В и фазное 220 В.

Трехпроводная есть, с изолированной нейтралью при нормальном режиме работы, менее опасна, а при аварийном режиме более безопасна сеть с заземленной нейтрально, поэтому в условиях, когда имеется агрессивная среда и, поддерживать изоляцию в хорошем состоянии затруднительно, предпочтение отдают чегырехпроводной сети с заземляемой нейтралью.

При напряжении выше 1000 В разрешается применять трехфазные сети: трехпроводную с изолированной нейтралью и трехпроводную с заземленной нейтралью.

Применительно к сетям переменного тока включение человека в электрическую сеть может быть однофазным и двухфазным.

Двухфазное включение, т.е. прикосновение человека одновременно к двум фазам, как правило, более опасно, поскольку к телу человека прикладывается наибольшее в данной сети напряжение - линейное, которое зависит лишь от напряжения сети и сопротивления человека, не зависит от режима нейтрали

I., = 1,73Uф/Rч = Uл/ R

где 1„ - величина тока, проходящего через тело человека, A; U, - линейное напряжение, т.е. напряжение между фазными проводами сети, В; Uф - фазное напряжение (напряжение между началом и концом одной обмотки или между фазным и нулевым проводами), В.

Двухфазное включение является одинаково опасным в сети, как с изолированной, так и с заземленной нейтралью.

Однофазное включение возникает значительно чаще, но является менее опасным, чем двухфазное, поскольку напряжение, под которым оказывается человек, не превышает фазного, т.е. меньше линейного в 1,73 раза. Соответственно, меньше оказывается ток, проходящий через человека.

При однофазном включении на величину тока влияют также режим нейтрали источника тока, сопротивление изоляции и емкость проводов относительно земли, сопротивление пола, на котором стоит человек, сопротивление его обуви и некоторые другие факторы.

Однофазная сеть может быть изолирована от земли или иметь заземленный провод.

Классификация помещений и зданий по степени взрывопожароопасности.

ОНТП 24–85

Все помещения и здания подразделяются на 5 категорий:

Б – помещения, где осуществляются технологические процессы с использованием ЛВЖ с температурой вспышки свыше 28 °С, способные образовывать взрывоопасные и пожароопасные смеси при воспламенении которых образуется избыточное расчетное давление взрыва свыше 5 кПа.

tВСП > 28 °С; P – свыше 5 кПа.

В – помещения и здания, где обращаются технологические процессы с использованием горючих и трудно горючих жидкостей, твердых горючих веществ, которые при взаимодействии друг с другом или кислородом воздуха способны только гореть. При условии, что эти вещества не относятся ни к А, ни к Б. Эта категория пожароопасная.

Г – помещения и здания, где обращаются технологические процессы с использованием негорючих веществ и материалов в горючем, раскаленном или расплавленном состоянии.

Д – помещения и здания, где обращаются технологические процессы с использованием твердых негорючих веществ и материалов в холодном состоянии.

Основные причины пожаров: короткое замыкание, перегрузки проводов /кабелей, образование переходных сопротивлений.

Режим короткого замыкания – появление в результате резкого возрастания силы тока, электрических искр, частиц расплавленного металла, электрической дуги, открытого огня, воспламенившейся изоляции.

Причины возникновения короткого замыкания:

ошибки при проектировании.

старение изоляции.

увлажнение изоляции.

механические перегрузки.

Пожарная опасность при перегрузках – чрезмерное нагревание отдельных элементов, которое может происходить при ошибках проектирования в случае длительного прохождения тока, превышающего номинальное значение.

При 1,5 кратном превышении мощности резисторы нагреваются до 200–300 ˚С.

Пожарная опасность переходных сопротивлений – возможность воспламенения изоляции или других близлежащих горючих материалов от тепла, возникающего в месте аварийного сопротивления (в переходных клеммах, переключателях и др.).

Пожарная опасность перенапряжения – нагревание токоведущих частей за счет увеличения токов, проходящих через них, за счет увеличения перенапряжения между отдельными элементами электроустановок. Возникает при выходе из строя или изменения параметров отдельных элементов.

Пожарная опасность токов утечки – локальный нагрев изоляции между отдельными токоведущими элементами и заземленными конструкциями.

строительно–планировочные.

технические.

способы и средства тушения пожаров.

организационные.

Строительно–планировочные определяются огнестойкостью зданий и сооружений (выбор материалов конструкций: сгораемые, несгораемые, трудно сгораемые) и предел огнестойкости – это количество времени в течении которого под воздействием огня не нарушается несущая способность строительных конструкций вплоть до появления первой трещины.

Все строительные конструкции по пределу огнестойкости подразделяются на 8 степеней от 1/7 часа до 2 часов.

Для помещений ВЦ используют материалы с пределом стойкости от 1–5 степеней. В зависимости от степени огнестойкости определяют наибольшие дополнительные расстояния от выходов для эвакуации при пожарах (5 степень – 50 минут).

Технические меры – это соблюдение противопожарных норм при эвакуации систем вентиляции, отопления, освещения, электрического обеспечения и т.д.

использование разнообразных защитных систем.

соблюдение параметров технологических процессов и режимов работы оборудования.

Организационные меры – проведение обучения по пожарной безопасности, соблюдение мер по пожарной безопасности.

Снижение концентрации кислорода в воздухе.

Понижение температуры горючего вещества ниже температуры воспламенения.

Изоляция горючего вещества от окислителя.

Огнегасительные вещества: вода, песок, пена, порошок, газообразные вещества не поддерживающие горение (хладон), инертные газы, пар.

А. огнетушители химической пены.

В. огнетушитель пенный.

С. огнетушитель порошковый.

D. огнетушитель углекислотный, бром этиловый.

Противопожарные системы.

А. система водоснабжения.

В. пеногенератор.

Система автоматического пожаротушения с использованием средств автоматической сигнализации.

А. пожарный извещатель (тепловой, световой, дымовой, радиационный).

В. для ВЦ используются тепловые датчики–извещатели типа ДТЛ, дымовые, радиоизотопные типа РИД.

Система пожаротушения ручного действия (кнопочный извещатель).

Для ВЦ используются огнетушители углекислотные ОУ, ОА (создают струю распыленного бром этила) и системы автоматического газового пожаротушения, в которой используется хладон или фреон как огнегасительное средство.

Для осуществления тушения загорания водой в системе автоматического пожаротушения используются устройства спринклеры и дренчеры. Их недостаток – распыление происходит на площади до 15 м².

Классификация пожаров Характеристика среды, объекта Огнегасительные средства
А Обычные твердые и горючие материалы (дерево, бумага) Все виды
Б Горючие жидкости, плавящиеся при нагревании (мазут, спирты, бензин) Распыленная вода, все виды пены, порошки, составы на основе СО2 и бромэтила
С Горючие газы (водород, ацетилен, углеводороды) Газовые составы, в состав которых входят инертные разбавители (азот, порошки, вода)
Д Металлы и их сплавы (натрий, калий, алюминий, магний) Порошки
Е Электрической установки под напряжением Порошки, двуокись азота, оксид азота, углекислый газ, составы бромэтил + СО2

Вопрос обеспечения БЖД работников фирм и предприятий и по сей день является актуальным, что обусловлено прежде всего тем, что обусловлено прежде всего тем, что на протяжении последних лет усугубляется неблагоприятная ситуация в промышленности с охраной труда, а в ОС - с качеством природной среды. Растут число и масштабы техногенных ЧС. В промышленности растет уровень производственного травматизма и профессиональной заболеваемости. Растут и масштабы загрязнения атмосферы.

Рост масштабов производственной деятельности, расширение области применения технических систем, автоматизация производственных процессов приводят к появлению новых неблагоприятных факторов производственной среды, учет которых является необходимым условием обеспечения требуемой эффективности деятельности и сохранение здоровья работников. Поэтому в проекте были рассмотрены возможные поражающие, опасные и вредные факторы производственной среды, также были описаны методы и средства обеспечения БЖД работников, основные мероприятия по электробезопасности, охране ОС, предупреждению пожаров и аварий в помещении и ликвидации последствий ЧС.

В связи с вышеизложенным, считаю, что проект безопасен для экологии и здоровья человека из-за следующих факторов:

Надежная работа большого количества устройств в одной сети обеспечивается с помощью технологии передачи маркера;

Стабильную работу сети без сбоев и прерываний обеспечивает использование для передачи информации всего рабочего диапазона частот

Количество технических средств для организации канала связи – минимально (УП – в едином корпусе)

Слюдяной конденсатор связи не взрывоопасен

Конструктив оборудования обеспечивает работу в температурном режиме от -40°С до 85°С с влажностью до 95%

А кроме вышеизложенного, сеть на основе технологии PLC не требует технического обслуживания в процессе эксплуатации.


На сегодняшний день технология PLC является интересным и полезным продуктом, находящимся в особой нише, применение которого в отдельных случаях может дать хороший экономический результат. Наиболее перспективные области применения решений:

Организация связи в коттедже или квартире с использованием линейки

Организация связи в небольших коаксиальных сетях в сельской местности и поселках с использованием линейки Access или In-home

Организация связи до территориально удаленных населенных пунктов по средневольтовым линиям на дальности от 1 км с использованием линейки Access MV.

А вот столь популярное на западе использование PLC решений для организации связи в различных административных зданиях может наталкиваться на проблемы, вызванные спецификой построения и обслуживания отечественных электросетей.

Хотелось бы еще раз напомнить о необходимости строго соблюдения правил безопасности. Работы на электросетях должны проводить люди прошедшие инструктаж и получившие соответствующий допуск. Понятнее всего о мерах предосторожности

Учитывая динамику развития рынка, можно ожидать, что широкополосные технологии PLC в течение ближайших полутора лет могут найти широкое применение в самых различных отраслях - от телеметрии ресурсов коммунальных сетей до многофункциональных интеллектуальных систем отдельных помещений. После завершения работы над основными международными стандартами вероятно начало встраивания PLC-адаптеров практически во все бытовые приборы, предусматривающие возможность обмена данными с «внешним миром».

Учитывая, что в ЧР только два основных оператора фиксированной связи, рынок телекоммуникационных услуг не занят полностью, а использование и применение технологии PLC по мере ее развития, позволит стать одним из лидеров этого сегмента рынка как существующим провайдерам так новым участникам.

Проще говоря имея небольшой капитал можно создать очень перспективную и конкурентно способную организацию по предоставлению ШПД в интернет.


1. Савин А.Ф. PLC – уже не экзотика. Вестник связи

2. Павловский А. Соломасов С. PLC в России. Специфика, проблемы, решения, проекты. ИнформКурьерСвязь.

3. Невдяев Л.М. Мост в Интернет по линиям электропередачи. ИнформКурьерСвязь.

4. Курочкин Ю.С. "PLC приходит в Россию". Connect.

5. Коноплянский Д.К. PLC - передача данных по электрическим сетям. Последняя миля.

6. Даффи Д. BPL набирает силу. Сети.

7. Морриси П. Реализация технологии BPL. Сети и системы связи.

8. Отчет «Технология PLC и ее перспективы на российском рынке широкополосного абонентского доступа», компания «Современные телекоммуникации» .

9. Электромонтажные работы. В 11 кн. Кн. 8. Ч. 1. Воздушные линии электропередачи: Учеб. пособие для ПТУ / Магидин Ф. А.; Под ред. А. Н. Трифонова. - М.: Высшая школа, 1991. - 208 с ISBN 5-06-001074-0

10. «Программируемые контроллеры PLC-5 ControlNet» - Allen-Bradley

11. «Безопасность жизнедеятельности» 2009 г.в. Р.А. Газаров,Р.С. Эржапова, Х.Э.Таймасханов, М.С.Хасиханов,

12. «Финансы предприятия» Е.Б. Тютюкина.

13. http://www.dchizhikov.boom.ru/works/PlanPLC.htm (Интернет через розетку - анализ товарного предложения на рынке PLC-модемов. Чижиков Дмитрий)

14. http://www.mrcb.ru/kpk.html?25614

15. http://network.xsp.ru/5_5.php

16. http://ru.wikipedia.org – электронная энциклопедия

17. http://www.datatelecom.ru/technology/plc.html

18. http://www.tellink.ru

19. https://www.corinex.com

20. http://www.bosfa.energoportal.ru/srubric16008-1.htm


BPL Broadband over Power Lines - широкополосная передача по силовым линиям
CBPL Cognitive Broadband over Power Lines - «распознаваемая» широкополосная передача по силовым линиям
CENELEC Comite Europeen fie Normalisation Electnotechnique - Европейский комитет по стандартизации в области электротехники (английское наименование - Еигореаn Committee for Electrotechnical Standardization)
CoS Class-of-Service - класс обслуживания
CPE Customer Premises Equipment - абонентское оборудование
ETSI European Telecommunications Slandartizalion Institute - Европейский институт по стандартизации в области телекоммуникаций
GMII Giqabit Media Independence Interface - гигабитный независимый от среды интерфейс
GPIO General Purpose I/O - основные задачи ввода/вывода
FDD Frequency Devision Duplexing - дуплексирование с частотным разделением
HV High Voltage - высокое напряжение
LV Low Voltage - низкое напряжение
MII Media Independence Interface - независимый от среды интерфейс
MV Medium Voltage - среднее напряжение
NMS Network Management System - система управления сетью
NPL Narrowband over Power Lines - узкополосная передача по силовым линиям
OFDM Ortogonal Frequency Division Multiplexing - ортогональное частотное мупьтиплексирование
OPERA Open PLC European Research Alliance - Европейский исследовательский альянс в области PLC
PLC Power Line Communications - связь по силовым кабелям
PLT Power Line Telecommunications - телекоммуникации по силовым кабелям
QoS Quality-of-Service - качество обслуживания
SPI Serial Peripheral Interface - последовательный периферийный интефейс
TDD Time Devision Duplexing - дуплексирование с временным разделением
TDM Time Devision Multiplexing - мультиплексирование с временным разделением
UART Universal Asynchronous Receiver-Transmitter - универсальный асинхронный приемопередатчик
UPA Universal Powerline Association - ассоциация Universal Powerline
VLAN Vitual LAN - виртуальная локальная сеть