Контакты

Для предназначен блок питания. Блоки питания для ПК: принципы работы и основные узлы. Прочие характеристики и сертификаты

Компьютерный блок питания (БП) – это вторичный источник электропитания, то есть устройство преобразующее электричество, поставляемое сетью, в приемлемое для снабжения энергией различных узлов компьютера.

Качественные блоки питания также выполняют функцию стабилизации и защиты от помех питающего напряжения.

Как правило, берется переменный ток из сети с напряжением 170-240В (обычная электросеть), и преобразуется в постоянный ток с напряжением до 12В.

Основные характеристики блока питания: ¬ мощность, КПД, наличие необходимых разъемов, нагрузка, форм-фактор, охлаждение.

Устройство и производители блоков питания

Существует два вида блоков питания: импульсные и линейные .

Линейные БП имеют малую мощность при сравнительно большом размере и весе, а также их работа сопровождается трансформаторным шумом, посему в современных компьютерах практически не используются.

Все современные блоки питания имеют импульсный принцип действия . Такие БП работают как высокочастотные преобразователи.

Чтобы наглядно разобраться с принципом действия обоих приборов проведем аналогию: представим, что нам нужно забить гвоздь; импульсное преобразование здесь сравнимо с ударами, а линейное – с надавливанием. Не зря мы говорим «забить гвоздь», а не «вдавить гвоздь». Ведь если бить молотком по гвоздю (по сути, создавать импульсы) результата мы достигнем, затратив минимальное количество сил и времени.

Подобно этому, импульсный принцип действий блока питания, позволяет существенно уменьшить вес и размер БП без потерь мощности.

На сегодняшний день на рынке представлено множество блоков питания с одинаковыми характеристиками, однако существенно отличающимися по цене. Разница может быть в 300-400%. Это явление объясняется тем, что для достижения стабильности в работе импульсного БП требуются более дорогие детали. Однако не все производители считают стабильность необходимой. Действительно, в некоторых случаях дешевые БП работают также хорошо, как их дорогие собратья. Так какие же выбрать?

Помните: «Скупой платит дважды». Блок питания соединен практически со всеми комплектующими. И как хватит всего нескольких неточных ударов для того чтобы вышеупомянутый гвоздь согнулся, так хватит и нескольких перебоев в работе блока питания для выхода из строя не только его самого, но и одного, нескольких, а то и всех комплектующих, с которыми он связан. Сэкономив на блоке питания, вы рискуете потерять весь системный блок!

Среди производителей блоков питания хорошо себя зарекомендовали: Enermax , Tagan , FSP Groop , Thermaltake , CoolerMaster , также можно воспользоваться блоками питания от: Chieftec , Corsair , OCZ , ZALMAN . Покупая блоки питания других фирм – вы опять-же рискуете.

Основные разъемы блока питания

Подходя к выбору блока питания, вы уже должны приблизительно знать, какие комплектующие будут стоять у вас на компьютере. Исходя из этого, можно будет отобрать блоки питания с подходящими разъемами.

Существует восемь основных типов разъемов питания :
1) – ATX . Имеет 24 контакта (в большинстве случаев 20 + 4 для совместимости с 20-ти контактным входом). Используется для подачи питания на разные части материнской платы.
2) – CPU . Имеет 4 контакта. Используется для подачи питания на процессор (подсоединяется к материнской плате).
3) и 4) – PCI Express . Имеют соответственно 6 и 8 контактов. Используются для подачи питания на карты расширения (к примеру, видеокарты).
5) и 6) – Molex и SATA . Имеют 4 и 15 контактов соответственно. Используются для подачи питания на различные устройства (приводы, жесткие диски…) Ранее использовался только Molex , однако с появлением SATA порта появилось и SATA питание.
7) – Floppy . Имеет 4 контакта. Разработан для подачи питания на CD-приводы и дисководы. Сейчас используется для подачи питания на различные устройства (приводы, дополнительные контроллеры).
8) – AUX . Имеет 6 контактов. Используется как дополнительный канал питания для различных устройств.

Мощность блока питания

Мощность . Данная характеристика является ключевой при выборе блока питания. Мощность определяет насколько «сильным» будет ваш БП, то есть как много и насколько производительных комплектующих можно будет установить на вашем компьютере. Характеристика измеряется в Ваттах.

При выборе БП следует учитывать, что максимально допустимой мощности для компьютера не существует, то есть, если для вашего компьютера подходит блок питания мощностью 400Вт, то ему подойдет БП и на 500Вт, и на 550Вт, и на 600Вт... Однако установка БП с меньшей мощностью приведет к сбоям и произвольной перезагрузке компьютера.

Мощность рассчитывается исходя из характеристик каждого комплектующего подключаемого к данному блоку питания. Информацию о потреблении энергии можно найти на упаковке или в инструкции по эксплуатации к устройству (в характеристиках товара обычно ее не указывают), но в большинстве случаев комплектующие выбирают через Интернет, и возможности увидеть инструкцию \ коробку нет.

Для облегчения процесса подсчета мощности существует несколько однотипных программ. Возьмем, к примеру, программу для расчета мощности блока питания Power Watts PC . Для расчета мощности с помощью этой программы необходимо поочередно выбрать из списка комплектующие, которые вы хотите установить себе на компьютер и программа сама покажет, блок питания какой мощности вам нужен. Может случиться так, что в программе нет конкретно вашей модели комплектующего (база данных программы велика и постоянно обновляется, но все же такое иногда встречается), тогда выберите модель, наиболее похожую на вашу – это существенно не повлияет на мощность.

На качественных блоках питания присутствует логотип, показывающий коэффициент полезного действия (КПД) данного БП. Чем он выше – тем лучше. Не следует покупать блок питания с КПД ниже 80%. Так как отклонение в мощности в этом случае может официально составлять выше 20% (чтобы узнать процент отклонение нужно отнять величину КПД от ста). То есть, купив блок питания на 500Вт вы получите БП на 400Вт.

Лучше ставить блок питания с заведомо завышенной мощностью на 20% и более. Такой ход защитит ваш компьютер от неточностей, допущенных производителями при производстве БП, а также у вас появится возможность дальнейшей модернизации вашего компьютера без покупки нового блока питания.

Зачастую, для выбора блока питания информации, описанной выше достаточно. Однако есть еще несколько характеристик, пользуясь которыми вы можете подстраховать себя при выборе БП.

Максимальные нагрузки . В описании товара вы можете встретить, к примеру такую конструкцию: +3.3ВDC - 24A, +5ВDC - 24A, +12В1 - 16A, +12В2 - 16A, +12В3 - 16A, +12В4 - 16A, +5ВSB - 2.5A, -12В - 0.5A. Такая конструкция показывает, как можно распределить нагрузку на БП. Разберемся с обозначением:

Напряжение зависит от разъема, оно стационарно. Сила тока зависит от количества подключенных устройств и их мощности; может варьироваться от нуля и до указанной величины. Дополнительная информация в первом случае показывает, что ток постоянен, во втором – линию нагрузки (вторая в данном случае). Нет необходимости углубляться в эти физические величины. Для простоты можно перевести все это в мощность. А она равна произведению напряжения на силу тока.

Комбинированные нагрузки . Конструкция выглядит так: +3.3ВDC & +5ВDC - 155 Вт; +12В1 & +12В2 & +12В3 & +12В4 - 504 Вт. По сути это то же самое что и максимальные нагрузки , но тут производитель тут указывает не силу тока, а мощность, причем сразу нескольких линий.

Существование таких характеристик как комбинированные и максимальные нагрузки , а также существование линий нагрузки указывает на то, что необходимо распределение питания по линиям и разъемам на них. То есть нельзя подключать много устройств к одному разъему (к одной линии нагрузки), иначе будет нехватка мощности. Учитывайте, что потребляемая нагрузка зависит от устройства, а не от разъема. То есть конкретное устройство может брать напряжение только с одного контакта на разъеме, несмотря на то, что подключены все – остальные не будут потреблять энергию.

Также следует сказать, что некоторые люди при модернизации компьютера, в целях экономии, докупают маломощный блок питания к своему старому. То есть на компьютере стоит, к примеру, БП на 500Вт, а необходима мощность в 750Вт. И чтобы не покупать блок питания на 750Вт, они покупают БП на 250 и часть комплектующих подключают к одному блоку, а часть – к другому. Можно однозначно заявить – такая конструкция работать не будет! Блок питания не сможет выдать все 250Вт на одну или пару линий нагрузки – на это и указывают вышеприведенные характеристики. Но нужно заметить, что работа компьютера от двух блоков питания возможна, при условии, что суммарная мощность блоков питания будет превышать необходимую, и нагрузка будет грамотно распределена. То есть, чтобы обеспечить питание компьютеру, который работал бы от блока питания на 750Вт, необходимо к БП на 500Вт докупить БП на 350-450Вт.

Охлаждение, помехи, форм-фактор

Блок питания нуждается в постоянном охлаждении , для этого достаточно куллера, установленного внутри БП. Однако необходимо отметить, что качественные блоки питания охлаждают не только себя, но и другие комплектующие. В таких БП куллер установлен снизу\сверху корпуса, а не по бокам. Комплектация блока питания куллером подразумевает наличие шума от вентилятора, поэтому обратите внимание и на эту характеристику.

Импульсные блоки питания могут создавать высокочастотные помехи в сети, к которой они подключены, тем самым уменьшая мощность других устройств. Лучше чтобы выбранный вами блок питания был укомплектован модулем PFC – устройством, защищающим сеть от помех.

Что касается форм-фактора (габаритов блока питания), то этот параметр следует выбирать исходя из габаритов корпуса. Для обычного компьютерного корпуса подойдет блок питания форм-фактора ATX .

Итог . При выборе блока питание обратите особое внимание на мощность, разъемы и производителя БП. Учитывайте КПД и наличие PFC. Пользуйтесь показателями нагрузки для расчета мощности в конкретной ситуации. Также посмотрите на форм-фактор и охлаждение.

Блок питания предназначен для снабжения электрическим током всех компонентов компьютера. Он должен быть достаточно мощным и иметь небольшой запас, чтобы компьютер работал стабильно. Кроме того блок питания должен быть качественным, так как от него сильно зависит срок службы всех компонентов компьютера. Сэкономив 10-20$ на покупке качественного блока питания вы рискуете потерять системный блок стоимостью 200-1000$.

Мощность блока питания выбирается исходя из мощности компьютера, которая в основном зависит от энергопотребления процессора и видеокарты. Также нужно, чтобы блок питания имел сертификат хотя бы 80 Plus Standart. Оптимальными по соотношению цена/качество являются блоки питания Chieftec, Zalman и Thermaltake.

Для офисного компьютера (документы, интернет) вполне достаточно блока питания на 400 Вт, берите самый недорогой Chieftec или Zalman, не ошибетесь.
Блок питания Zalman LE II-ZM400

Для мультимедийного компьютера (фильмы, простые игры) и игрового компьютера начального класса (Core i3 или Ryzen 3 + GTX 1050 Ti) подойдет самый недорогой блок питания на 500-550 Вт от тех же Chieftec или Zalman, он будет иметь запас на случай установки более мощной видеокарты.
Блок питания Chieftec GPE-500S

Для игрового ПК среднего класса (Core i5 или Ryzen 5 + GTX 1060/1070 или RTX 2060) подойдет блок питания 600-650 Вт от Chieftec, если будет сертификат 80 Plus Bronze, то хорошо.
Блок питания Chieftec GPE-600S

Для мощного игрового или профессионального компьютера (Core i7 или Ryzen 7 + GTX 1080 или RTX 2070/2080) лучше взять блок питания мощностью 650-700 Вт от Chieftec или Thermaltake с сертификатом 80 Plus Bronze или Gold.
Блок питания Chieftec CPS-650S

2. Блок питания или корпус с блоком питания?

Если вы собираете профессиональный или мощный игровой компьютер, то блок питания рекомендуется выбирать отдельно. Если речь идет об офисном или обычном домашнем компьютере, то можно сэкономить и приобрести хороший корпус в комплекте с блоком питания, о чем речь пойдет .

3. Чем отличается хороший блок питания от плохого

Самые дешевые блоки питания (20-30$) по определению не могут быть хорошими, так как производители в этом случае экономят на всем чем только можно. Такие блоки питания имеют плохие радиаторы и много не распаянных элементов и перемычек на плате.

На этих местах должны быть конденсаторы и дроссели, предназначенные для сглаживания пульсаций напряжения. Именно из-за этих пульсаций происходит преждевременный выход их строя материнской платы, видеокарты, жесткого диска и других компонентов компьютера. Кроме того, такие блоки питания часто имеют маленькие радиаторы, из-за которых происходит перегрев и выход из строя самого блока питания.

Качественный блок питания имеет минимум не распаянных элементов и радиаторы большего размера, что можно заметить по плотности монтажа.

4. Производители блоков питания

Одни из лучших блоков питания производит компания SeaSonic, но они и самые дорогие.

Не так давно расширили ассортимент блоков питания хорошо известные бренды для энтузиастов Corsair и Zalman. Но самые бюджетные их модели имеют довольно слабую начинку.

Одними из лучших по соотношению цена/качество являются блоки питания AeroCool. В плотную к ним подбирается хорошо зарекомендовавший себя производитель кулеров DeepCool. Если вы не хотите переплачивать за дорогой бренд, но при этом получить качественный блок питания, обратите внимание на эти торговые марки.

Компания FSP производит блоки питания под разными брендами. Но дешевые БП под их собственной торговой маркой я бы не рекомендовал, они часто имеют короткие провода и мало разъемов. Топовые блоки питания FSP неплохи, но при этом стоят уже не дешевле именитых брендов.

Из тех брендов, которые известны в более узких кругах, можно отметить очень качественные и дорогие be quiet!, мощные и надежные Enermax, Fractal Design, чуть более дешевые, но качественные Cougar и хорошие, но недорогие HIPER как бюджетный вариант.

5. Мощность блока питания

Мощность – это основная характеристика блока питания. Мощность блока питания рассчитывается как сумма мощности всех компонентов компьютера + 30% (на пиковые нагрузки).

Для офисного компьютера вполне достаточно минимальной мощности блока питания 400 Ватт. Для мультимедийного компьютера (фильмы, простые игры) лучше взять блок питания на 500-550 Ватт, вдруг вы потом захотите поставить видеокарту. Для игрового компьютера с одной видеокартой желательно установить блок питания мощностью 600-650 Ватт. Для мощного игрового компьютера с несколькими видеокартами может потребоваться блок питания мощностью 750 Ватт и более.

5.1. Расчет мощности блока питания

  • Процессор 25-220 Ватт (уточняйте на сайте продавца или производителя)
  • Видеокарта 50-300 Ватт (уточняйте на сайте продавца или производителя)
  • Материнская плата начального класса 50 Ватт, среднего класса 75 Ватт, высокого класса 100 Ватт
  • Жесткий диск 12 Ватт
  • SSD-диск 5 Ватт
  • DVD-привод 35 Ватт
  • Модуль памяти 3 Ватт
  • Вентилятор 6 Ватт

Не забудьте добавить к сумме мощностей всех компонентов 30%, это обезопасит вас от неприятных ситуаций.

5.2. Программа для расчета мощности блока питания

Для более удобного расчета мощности блока питания существует прекрасная программа «Power Supply Calculator». Она также позволяет рассчитать необходимую мощность источника бесперебойного питания (ИБП или UPS).

Программа работает на всех версиях Windows с установленным «Microsoft .NET Framework» версии 3.5 или выше, который обычно уже установлен у большинства пользователей. Скачать программу «Power Supply Calculator» и если понадобится «Microsoft .NET Framework» вы можете в конце статьи в разделе « ».

6. Стандарт ATX

Современные блоки питания имеют стандарт ATX12V. Этот стандарт может быть нескольких версий. Современные блоки питания изготавливаются по стандартам ATX12V 2.3, 2.31, 2.4, которые и рекомендуются к приобретению.

7. Коррекция мощности

Современные блоки питания обладают функцией коррекции мощности (PFC), что позволяет им меньше потреблять энергии и меньше греться. Существует пассивная (PPFC) и активная (APFC) схема коррекции мощности. КПД блоков питания с пассивной коррекцией мощности достигает 70-75%, с активной – 80-95%. Рекомендую приобретать блоки питания с активной коррекцией мощности (APFC).

8. Сертификат 80 PLUS

Качественный блок питания обязательно должен иметь сертификат 80 PLUS. Эти сертификаты бывают разного уровня.

  • Certified, Standard – блоки питания начального класса
  • Bronze, Silver – блоки питания среднего класса
  • Gold – блоки питания высокого класса
  • Platinum, Titanium – топовые блоки питания

Чем выше уровень сертификата, тем выше качество стабилизации напряжения и другие параметры блока питания. Для офисного, мультимедийного или игрового компьютера среднего класса достаточно обычного сертификата. Для мощного игрового или профессионального компьютера желательно брать блок питания с бронзовым или серебряным сертификатом. Для компьютера с несколькими мощными видеокартами – с золотым или платиновым.

9. Размер вентилятора

Некоторые блоки питания все еще оснащаются вентилятором размером 80 мм.

Современный блок питания должен иметь вентилятор размером 120 или 140 мм.

10. Разъемы блока питания

ATX (24-pin) — разъем питания материнской платы. На всех блоках питания есть 1 такой разъем.
CPU (4-pin) — разъем питания процессора. На всех блоках питания есть 1 или 2 таких разъема. Некоторые материнские платы имеют 2 разъема питания процессора, но могут работать и от одного.
SATA (15-pin) — разъем питания жестких дисков и оптических приводов. Желательно, что бы в блоке питания было несколько отдельных шлейфов с такими разъемами, так как одним шлейфом подключить жесткий диск и оптический привод будет проблематично. Поскольку на одном шлейфе может быть 2-3 разъема, блок питания должен иметь 4-6 таких разъемов.
PCI-E (6+2-pin) — разъем питания видеокарты. Мощные видеокарты требуют 2 таких разъема. Для установки двух видеокарт необходимо 4 таких разъема.
Molex (4-pin) — разъем питания устаревших жестких дисков, оптических приводов и некоторых других устройств. В принципе не требуется если у вас нет таких устройств, но все равно присутствует во многих блоках питания. Иногда таким разъемом может подаваться напряжение на подсветку корпуса, вентиляторы, платы расширения.

Floppy (4-pin) — разъем питания дисковода. Сильно устарел, но его все еще можно встретить в блоках питания. Иногда им запитываются некоторые контроллеры (переходники).

Конфигурацию разъемов блоков питания уточняйте на сайте продавца или производителя.

11. Модульные блоки питания

В модульных блоках питания лишние кабели можно отстегнуть и они не будет мешаться в корпусе. Это удобно, но такие блоки питания стоят несколько дороже.

12. Настройка фильтров в интернет-магазине

  1. Зайдите в раздел «Блоки питания» на сайте продавца.
  2. Выберете рекомендуемых производителей.
  3. Выберете необходимую мощность.
  4. Задайте другие важные для вас параметры: стандарты, сертификаты, разъемы.
  5. Последовательно просматривайте позиции, начиная с более дешевых.
  6. При необходимости уточняйте конфигурацию разъемов и другие недостающие параметры на сайте производителя или другого интернет-магазина.
  7. Покупайте первую подходящую по всем параметрам модель.

Таким образом, вы получите оптимальный по соотношению цена/качество блок питания, удовлетворяющий вашим требованиям за минимально возможную стоимость.

13. Ссылки

Блок питания Corsair CX650M 650W
Блок питания Thermaltake Smart Pro RGB Bronze 650W
Блок питания Zalman ZM600-GVM 600W

Введение

Неотъемлемой частью каждого компьютера является блок питания. Он важен так же, как и остальные части компьютера. При этом покупка блока питания осуществляется достаточно редко, т.к. хороший БП может обеспечить питанием несколько поколений систем. Учитывая все это к приобретению блока питания необходимо отнестись очень серьезно, так как судьба компьютера в прямой зависимости от работы блока питания.

Для осуществления гальванической развязки достаточно изготовить трансформатор с необходимыми обмотками. Но для питания компьютера нужна немалая мощность, особенно для современных ПК. Для питания компьютера пришлось бы изготовлять трансформатор, который имел бы не только большой размер, но и очень много весил. Однако с ростом частоты питающего тока трансформатора для создания того же магнитного потока необходимо меньше витков и меньше сечение магнитопровода. В блоках питаниях, построенных на основе преобразователя, частота питающего напряжения трансформатора в 1000 и более раз выше. Это позволяет создавать компактные и легкие блоки питания.

Простейший импульсный БП

Рассмотрим блок-схему простого импульсного блока питания, который лежит в основе всех импульсных блоков питания.

Блок схема импульсного блока питания.

Первый блок осуществляет преобразование переменного напряжения сети в постоянное. Такой преобразователь состоит из диодного моста, выпрямляющего переменное напряжение, и конденсатора, сглаживающего пульсации выпрямленного напряжения. В этом боке также находятся дополнительные элементы: фильтры сетевого напряжения от пульсаций генератора импульсов и термисторы для сглаживания скачка тока в момент включения. Однако эти элементы могут отсутствовать с целью экономии на себестоимости.

Следующий блок - генератор импульсов, который генерирует с определенной частотой импульсы, питающие первичную обмотку трансформатора. Частота генерирующих импульсов разных блоков питания различна и лежит в пределах 30 - 200 кГц. Трансформатор осуществляет главные функции блока питания: гальваническую развязку с сетью и понижение напряжения до необходимых значений.

Переменное напряжение, получаемое от трансформатора, следующий блок преобразует в постоянное напряжение. Блок состоит из диодов выпрямляющих напряжение и фильтра пульсаций. В этом блоке фильтр пульсаций намного сложнее, чем в первом блоке и состоит из группы конденсаторов и дросселя. С целью экономии производители могут устанавливать конденсаторы малой емкости, а также дроссели с малой индуктивностью.

Первый импульсный блок питания представлял собой двухтактный или однотактный преобразователь. Двухтактный означает, что процесс генерации состоит из двух частей. В таком преобразователе по очереди открываются и закрываются два транзистора. Соответственно в однотактном преобразователе один транзистор открывается и закрывается. Схемы двухтактного и однотактного преобразователей представлены ниже.

Принципиальная схема преобразователя.

Рассмотрим элементы схемы подробнее:

    Х2 - разъем источник питания схемы.

    Х1 - разъем с которого снимается выходное напряжение.

    R1 - сопротивление, задающее начальное небольшое смещение на ключах. Оно необходимо для более стабильного запуска процесса колебаний в преобразователе.

    R2 - сопротивление, которое ограничивает ток базы на транзисторах, это необходимо для защиты транзисторов от сгорания.

    ТР1 - Трансформатор имеет три группы обмоток. Первая выходная обмотка формирует выходное напряжение. Вторая обмотка служит нагрузкой для транзисторов. Третья формирует управляющее напряжение для транзисторов.

В начальный момент включения первой схемы транзистор немного приоткрыт, т.к. к базе через резистор R1 приложено положительное напряжение. Через приоткрытый транзистор протекает ток, который также протекает и через II обмотку трансформатора. Ток, протекающий через обмотку, создает магнитное поле. Магнитное поле создает напряжение в остальных обмотках трансформатора. В следствии на обмотке III создается положительное напряжение, которое еще больше открывает транзистор. Процесс происходит до тех пор, пока транзистор не попадет в режим насыщения. Режим насыщения характеризуется тем, что при увеличении приложенного управляющего тока к транзистору выходной ток остается неизменным.

Так как напряжение в обмотках генерируется только в случае изменения магнитного поля, его роста или падения, то отсутствие роста тока на выходе транзистора, следовательно, приведет к исчезновению ЭДС в обмотках II и III. Пропадание напряжения в обмотке III приведет к уменьшению степени открытия транзистора. И выходной ток транзистора уменьшится, следовательно, и магнитное поле будет уменьшаться. Уменьшение магнитного поля приведет к созданию напряжения противоположной полярности. Отрицательное напряжение в обмотке III начнет еще больше закрывать транзистор. Процесс будет длиться до тех пор, пока магнитное поле полностью не исчезнет. Когда магнитное поле исчезнет, отрицательное напряжение в обмотке III тоже исчезнет. Процесс снова начнет повторяться.

Двухтактный преобразователь работает по такому же принципу, но отличие в том, что транзисторов два, и они по очереди открываются и закрываются. То есть когда один открыт - другой закрыт. Схема двухтактного преобразователя обладает большим преимуществом, так как использует всю петлю гистерезиса магнитного проводника трансформатора. Использование только одного участка петли гистерезиса или намагничивание только в одном направлении приводит к возникновению многих нежелательных эффектов, которые снижают КПД преобразователя и ухудшают его характеристики. Поэтому в основном везде применяется двухтактная схема преобразователя с фазосдвигающим трансформатором. В схемах, где нужна простота, малые габариты, и малая мощность все же используется однотактная схема.

Блоки питания форм-фактора АТХ без коррекции коэффициента мощности

Преобразователи, рассмотренные выше, хоть и законченные устройства, но в практике их использовать неудобно. Частота преобразователя, выходное напряжение и многие другие параметры «плавают», изменяются в зависимости от изменения: напряжения питания, загруженности выхода преобразователя и температуры. Но если ключами управлять контроллером, который бы мог осуществлять стабилизацию и различные дополнительные функции, то можно использовать схему для питания устройств. Схема блока питания с применением ШИМ-контроллера довольно проста, и, в общем, представляет собой генератор импульсов, построенный на ШИМ-котроллере.

ШИМ - широтно-импульсная модуляция. Она позволяет регулировать амплитуду сигнала прошедшего ФНЧ (фильтр низких частот) с изменением длительности или скважности импульса. Главные достоинства ШИМ это высокое значение КПД усилителей мощности и большие возможности в применении.

Схема простого блока питания с ШИМ контроллером.

Данная схема блока питания имеет небольшую мощность и в качестве ключа использует полевой транзистор, что позволяет упростить схему и избавиться от дополнительных элементов, необходимых для управления транзисторных ключей. В блоках питания большой мощности ШИМ-контроллер имеет элементы управления («Драйвер») выходным ключом. В качестве выходных ключей в блоках питаниях большой мощности используются IGBT-транзисторы.

Сетевое напряжение в данной схеме преобразуется в постоянное напряжение и чрез ключ поступает на первую обмотку трансформатора. Вторая обмотка служит для питания микросхемы и формирования напряжения обратной связи. ШИМ-котроллер генерирует импульсы с частотой, которая задана RC-цепочкой подключенной к ножке 4. Импульсы подаются на вход ключа, который их усиливает. Длительность импульсов изменяется в зависимости от напряжения на ножке 2.

Рассмотрим реальную схему АТХ блока питания. Она имеет намного больше элементов и в ней присутствуют еще дополнительные устройства. Красными квадратами схема блока питания условно поделена на основные части.

Схема АТХ блока питания мощностью 150-300 Вт.

Для питания микросхемы контроллера, а также формирования дежурного напряжения +5, которое используется компьютером, когда он выключен, в схеме находиться еще один преобразователь. На схеме он обозначен как блок 2. Как видно он выполнен по схеме однотактного преобразователя. Во втором блоке также есть дополнительные элементы. В основном это цепочки поглощения всплесков напряжений, которые генерируются трансформатором преобразователя. Микросхема 7805 - стабилизатор напряжения формирует дежурное напряжение +5В из выпрямленного напряжения преобразователя.

Зачастую в блоке формирования дежурного напряжения установлены некачественные или дефектные компоненты, что вызывает снижение частоты преобразователя до звукового диапазона. В результате чего из блока питания слышен писк.

Так как блок питания питается от сети переменного напряжения 220В, а преобразователь нуждается в питании постоянным напряжением, напряжение необходимо преобразовать. Первый блок осуществляет выпрямление и фильтрацию переменного сетевого напряжения. В этом блоке также находится заграждающий фильтр от помех, генерируемых самим блоком питания.

Третий блок это ШИМ-контроллер TL494. Он осуществляет все основные функции блока питания. Защищает блок питания от коротких замыканий, стабилизирует выходные напряжения и формирует ШИМ-сигнал для управления транзисторными ключами, которые нагружены на трансформатор.

Четвертый блок состоит из двух трансформаторов и двух групп транзисторных ключей. Первый трансформатор формирует управляющее напряжение для выходных транзисторов. Поскольку ШИМ-контроллер TL494 генерирует сигнал слабой мощности, первая группа транзисторов усиливает этот сигнал и передает его первому трансформатору. Вторая группа транзисторов, или выходные, нагружены на основной трансформатор, который осуществляет формирование основных напряжений питания. Такая более сложная схема управления выходными ключами применена из-за сложности управления биполярными транзисторами и защиты ШИМ-контроллера от высокого напряжения.

Пятый блок состоит из диодов Шоттки, выпрямляющих выходное напряжение трансформатора, и фильтра низких частот (ФНЧ). ФНЧ состоит из электролитических конденсаторов значительной емкости и дросселей. На выходе ФНЧ стоят резисторы, которые нагружают его. Эти резисторы необходимы для того, чтобы после выключения емкости блока питания не оставались заряженными. Также резисторы стоят и на выходе выпрямителя сетевого напряжения.

Оставшиеся элементы, не обведенные в блоке это цепочки, формируют «сигналы исправности». Этими цепочками осуществляется работа защиты блока питания от короткого замыкания или контроль исправности выходных напряжений.

Блок питания АТХ мощностью 200 Вт.

Теперь посмотрим, как на печатной плате блока питания мощностью 200 Вт расположены элементы. На рисунке показаны:

    Конденсаторы, выполняющие фильтрацию выходных напряжений.

    Место не распаянных конденсаторов фильтра выходных напряжений.

    Катушки индуктивности, выполняющие фильтрацию выходных напряжений. Более крупная катушка играет роль не только фильтра, но и еще работает в качестве ферромагнитного стабилизатора. Это позволяет немного снизить перекосы напряжений при неравномерной нагрузке различных выходных напряжений.

    Микросхема ШИМ-стабилизатора WT7520.

    Радиатор на котором установлены диоды Шоттки для напряжений +3.3В и +5В, а для напряжения +12В обычные диоды. Необходимо отметить, что часто особенно в старых блоках питаниях, на этом же радиаторе размещаются дополнительно элементы. Это элементы стабилизации напряжений +5В и +3,3В. В современных блоках питаниях размещаются на этом радиаторе только диоды Шоттки для всех основных напряжений или полевые транзисторы, которые используются в качестве выпрямительного элемента.

    Основной трансформатор, который осуществляет формирование всех напряжений, а также гальваническую развязку с сетью.

    Трансформатор, формирующий управляющие напряжения для выходных транзисторов преобразователя.

    Трансформатор преобразователя, формирующий дежурное напряжение +5В.

    Радиатор, на котором размещены выходные транзисторы преобразователя, а также транзистор преобразователя формирующего дежурное напряжение.

    Конденсаторы фильтра сетевого напряжения. Их не обязательно должно быть два. Для формирования двухполярного напряжения и образования средней точки устанавливают два конденсатора равной емкости. Они делят выпрямленное сетевое напряжение пополам, тем самым формируя два напряжения разной полярности, соединенных в общей точке. В схемах с однополярным питанием конденсатор один.

    Элементы фильтра сети от гармоник (помех), генерирующихся блоком питания.

    Диоды диодного моста, осуществляющие выпрямление переменного напряжения сети.

Блок питания АТХ мощностью 350 Вт.

Блок питания 350 Вт устроен эквивалентно. Сразу бросается в глаза больших размеров плата, увеличенные радиаторы и большего размера трансформатор преобразователя.

    Конденсаторы фильтра выходных напряжений.

    Радиатор, охлаждающий диоды, выпрямляющие выходное напряжение.

    ШИМ-контролер АТ2005 (аналог WT7520), осуществляющий стабилизацию напряжений.

    Основной трансформатор преобразователя.

    Трансформатор, формирующий управляющее напряжение для выходных транзисторов.

    Трансформатор преобразователя дежурного напряжения.

    Радиатор, охлаждающий выходные транзисторы преобразователей.

    Фильтр сетевого напряжения от помех блока питания.

    Диоды диодного моста.

    Конденсаторы фильтра сетевого напряжения.

Рассмотренная схема долго применялась в блоках питаниях и сейчас иногда встречается.

Блоки питания формата АТХ с коррекцией коэффициента мощности.

В рассмотренных схемах нагрузкой сети служит конденсатор, подключаемый к сети через диодный мост. Заряд конденсатора происходит только в том случае если на нем напряжение меньше чем сетевое. В результате ток носит импульсный характер, что имеет множество недостатков.

Мостовой выпрямитель напряжения.

Перечислим эти недостатки:

  • токи вносят в сеть высшие гармоники (помехи);
  • большая амплитуда тока потребления;
  • значительная реактивная составляющая в токе потребления;
  • сетевое напряжение не используется в течение всего периода;
  • КПД таких схем имеет небольшое значение.

Новые блоки питания имеют усовершенствованную современную схему, в ней появился еще один дополнительный блок - корректор коэффициента мощности (ККМ). Он осуществляет повышение коэффициента мощности. Или более простым языком убирает некоторые недостатки мостового выпрямителя сетевого напряжения.

Формула полной мощности.

Коэффициент мощности (КМ) характеризует, сколько в полной мощности активной составляющей и сколько реактивной. В принципе, можно сказать, а зачем учитывать реактивную мощность, она же мнимая и не несет пользу.

Формула коэффициента мощности.

Допустим, у нас есть некий прибор, блок питания, с коэффициентом мощности 0,7 и мощностью 300 Вт. Видно из расчетов, что наш блок питания имеет полную мощность (сумму реактивной и активной мощности) больше, чем указанная на нем. И эту мощность должна дать сеть питания 220В. Хотя эта мощность не несет пользы (даже счетчик электричества ее не фиксирует) она все же существует.

Расчет полной мощности блока питания.

То есть внутренние элементы и сетевые провода должны быть рассчитаны на мощность 430 Вт, а не 300 Вт. А представьте себе случай, когда коэффициент мощности равен 0,1 … Из-за этого ГОРСЕТЬЮ запрещается использовать приборы с коэффициентом мощности менее 0,6, а в случае обнаружения таковых на владельца налагается штраф.

Соответственно кампаниями были разработанные новые схемы блоков питания, которые имели ККМ. Вначале в качестве ККМ использовался включенный на входе дроссель большой индуктивности, такой блок питания называют блок питания с PFC или пассивным ККМ. Подобный блок питания обладает повышенным КМ. Для достижения нужного КМ необходимо оснащать блоки питания большим дросселем, так как входное сопротивление блока питания носит емкостной характер из-за установленных конденсаторов на выходе выпрямителя. Установка дросселя значительно увеличивает массу блока питания, и повышает КМ до 0,85, что не так уж и много.

400 Вт блок питания с пассивной коррекцией коэффициента мощности.

На рисунке представлен блок питания компании FSP мощностью 400 Вт с пассивной коррекцией коэффициента мощности. Он содержит следующие элементы:

    Конденсаторы фильтра выпрямленного сетевого напряжения.

    Дроссель, осуществляющий коррекцию коэффициента мощности.

    Трансформатор главного преобразователя.

    Трансформатор, управляющий ключами.

    Трансформатор вспомогательного преобразователя (дежурного напряжения).

    Фильтры сетевого напряжения от пульсаций блока питания.

    Радиатор, на котором установлены выходные транзисторные ключи.

    Радиатор, на котором установлены диоды, выпрямляющие переменное напряжение главного трансформатора.

    Плата управления скоростью вращения вентилятора.

    Плата, на которой установлен ШИМ-контроллер FSP3528 (аналог KA3511).

    Дроссель групповой стабилизации и элементы фильтра пульсаций выходного напряжения.

  1. Конденсаторы фильтра пульсаций выходного напряжения.

Включение дросселя для коррекции КМ.

Вследствие не высокой эффективности пассивной ККМ в блок питания была введена новая схема ККМ, которая построена на основе ШИМ-стабилизатора, нагруженного на дроссель. Эта схема приносит множество плюсов блоку питанию:

  • расширенный диапазон рабочих напряжений;
  • появилась возможность значительно уменьшить емкость конденсатора фильтра сетевого напряжения;
  • значительно повышенный КМ;
  • уменьшение массы блока питания;
  • увеличение КПД блока питания.

Есть и недостатки у этой схемы - это снижение надежности БП и некорректная работа с некоторыми источниками бесперебойного питания при переключениях режимов работы батарея / сеть. Некорректная работа этой схемы с ИБП вызвана тем, что в схеме существенно снизилась емкость фильтра сетевого напряжения. В момент, когда кратковременно пропадает напряжение, сильно возрастает ток ККМ, необходимый для поддержания напряжения на выходе ККМ, в результате чего срабатывает защита от КЗ (короткого замыкания) в ИБП.

Схема активного корректора коэффициента мощности.

Если посмотреть на схему, то она представляет собой генератор импульсов, который нагружен на дроссель. Сетевое напряжение выпрямляется диодным мостом и подается на ключ, который нагружен дросселем L1 и трансформатором Т1. Трансформатор введен для обратной связи контроллера с ключом. Напряжение с дросселя снимается с помощью диодов D1 и D2. Причем напряжение снимается поочередно с помощью диодов, то с диодного моста, то с дросселя, и заряжает конденсаторы Cs1 и Cs2. Ключ Q1 открывается и в дросселе L1 накапливается энергия нужной величины. Размер накопленной энергии регулируется длительностью открытого состояния ключа. Чем больше накоплено энергии, тем большее напряжение отдаст дроссель. После выключения ключа происходит отдача накопленной энергии дросселем L1 через диод D1 конденсаторам.

Такая работа позволяет использовать полностью всю синусоиду переменного напряжения сети в отличие от схем без ККМ, а также стабилизировать напряжение, питающее преобразователь.

В современных схемах блоков питаниях, часто применяют двухканальные ШИМ-контроллеры. Одна микросхема осуществляет работу, как преобразователя, так и ККМ. В результате существенно снижается количество элементов в схеме блока питания.

Схема простого блока питания на двухканальном ШИМ-контролере.

Рассмотрим схему простого блока питания на 12В с использованием двуканального ШИМ-контроллера ML4819. Одна часть блока питания осуществляет формирование постоянного стабилизированного напряжения +380В. Другая часть представляет собой преобразователь, формирующий постоянное стабилизированное напряжение +12В. ККМ состоит, как и в выше рассмотренном случае, из ключа Q1, нагруженного на него дросселя L1 трансформатора Т1 обратной связи. Диоды D5, D6 заряжают конденсаторы С2, С3, С4. Преобразователь состоит из двух ключей Q2 и Q3, нагруженных на трансформатор Т3. Импульсное напряжение выпрямляется диодной сборкой D13 и фильтруется дросселем L2 и конденсаторами С16, С18. С помощью патрона U2 формируется напряжение регулирования выходного напряжения.

Блок питания GlacialPower GP-AL650AA.

Рассмотрим конструкцию блока питания, в которой есть активный ККМ:

  1. Плата управления токовой защитой;
  2. Дроссель, выполняющий роль как фильтра напряжений +12В и +5В, так и функцию групповой стабилизации;
  3. Дроссель фильтра напряжения +3,3В;
  4. Радиатор, на котором размещены выпрямительные диоды выходных напряжений;
  5. Трансформатор главного преобразователя;
  6. Трансформатор, управляющий ключами главного преобразователя;
  7. Трансформатор вспомогательного преобразователя (формирующий дежурное напряжение);
  8. Плата контроллера коррекции коэффициента мощности;
  9. Радиатор, охлаждающий диодный мост и ключи главного преобразователя;
  10. Фильтры сетевого напряжения от помех;
  11. Дроссель корректора коэффициента мощности;
  12. Конденсатор фильтра сетевого напряжения.

Конструктивные особенности и типы разъемов

Рассмотрим виды разъемов, которые могут присутствовать на блоке питания. На задней стенке блока питания размещается разъем для подключения сетевого кабеля и выключатель. Раньше рядом с разъемом сетевого шнура размещался также разъем для подключения сетевого кабеля монитора. Опционально могут присутствовать и другие элементы:

  • индикаторы сетевого напряжения, или состояния работы блока питания;
  • кнопки управления режимом работы вентилятора;
  • кнопка переключения входного сетевого напряжения 110 / 220В;
  • USB-порты встроенные в блок питания USB hub;
  • другое.

На задней стенке все реже размещают вентиляторы, вытягивающие из блока питания воздух. Все чаше вентилятор размещают в верхней части блока питания из-за большего пространства для установки вентилятора, что позволяет установить большой и тихий активный элемент охлаждения. На некоторых блоках питаниях устанавливают даже два вентилятора и сверху и сзади.

Блок питания Chieftec CFT-1000G-DF.

С передней стенки выходит провод с разъемом подключения питания материнской платы. В некоторых блоках питаниях, модульных, он, как и другие провода, подключается через разъем. Ниже на рисунке указана распиновка контактов всех основных разъемов.

Можно заметить, что каждое напряжение имеет свой цвет провода:

  • Желтый цвет - +12 В,
  • Красный цвет - +5 В,
  • Оранжевый цвет - +3,3В,
  • Черный цвет - общий или земля.

Для остальных напряжений цвета проводов у каждого производителя могут варьироваться.

На рисунке не отображены разъемы дополнительного питания видеокарт, так как они подобны разъема дополнительного питания процессора. Также существуют другие виды разъемов, которые встречаются в компьютерах фирменной сборки компаний DelL, Apple и других.

Электрические параметры и характеристики блоков питания

Блок питания имеет множество электрических параметров, большинство из которых не отмечаются в паспорте. На боковой наклейке блока питания отмечается обычно только несколько основных параметров - рабочие напряжения и мощность.

Мощность блока питания

Мощность часто обозначают на этикетке большим шрифтом. Мощность блока питания, характеризует, сколько он может отдать электрической энергии подключаемым к нему приборам (материнская плата, видеокарта, жесткий диск и др.).

По идее, достаточно просуммировать потребление используемых компонентов и выбрать блок питание немного большей мощности для запаса. Для подсчета мощности можно воспользоваться, например сайтом http://extreme.outervision.com/PSUEngine , также вполне годятся рекомендации указанные в паспорте видеокарты, если таковой есть, тепловой пакет процессора и т.д.

Но на самом деле все намного сложнее, т.к. блок питания выдает различные напряжения - 12В, 5В, -12В, 3,3В и др. Каждая линия напряжения рассчитана на свою мощность. Логично было подумать, что эта мощность фиксированная, а сума их равна мощности блока питания. Но в блоке питания стоит один трансформатор для генерации всех этих напряжений, используемых компьютером (кроме дежурного напряжения +5В). Правда, редко, но все же можно найти блок питания с двумя раздельными трансформаторами, но такие источники питания дорогие и чаще всего используются в серверах. Обычные же БП ATX имеют один трансформатор. Из-за этого мощность каждой линии напряжений может плавать: увеличивается, если другие линии слабо нагружены, и уменьшаться, если остальные линии сильно нагружены. Поэтому часто на блоках питаниях пишут максимальную мощность каждой линии, и в результате, если их просуммировать, выйдет мощность даже больше, чем действительная мощность блока питания. Таким образом, производитель может запутать потребителя, например, заявляя слишком большую номинальную мощность, которую БП обеспечить не способен.

Отметим, что если в компьютере установлен блок питания недостаточной мощности, то это вызовет некоренную работу устройств («зависания», перезагрузки, щелкание головок жесткого диска), вплоть до невозможности включения компьютера. А если в ПК установлена материнская плата, которая не рассчитана на мощность компонентов, которые на ней установлены, то зачастую материнская плата функционирует нормально, но со временем разъемы подключения питания выгорают вследствие постоянного их нагрева и окисления.

Обгоревшие разъемы.

Допустимый максимальный ток линии

Хоть это и один из важных параметров блока питания, зачастую пользователь при покупке не обращает на него внимания. А ведь при превышении допустимого тока на лини блок питания выключается, т.к. срабатывает защита. Для ее отключения необходимо выключить блок питания от сети и подождать некоторое время, около минуты. Стоит учесть, что сейчас все самые прожорливые компоненты (процессор, видеокарта) питаются от линии +12В, поэтому в большей степени надо уделять внимание значениям указанных для нее токов. У качественных БП эта информация, обычно, вынесена в виде таблички (например, Seasonic M12D-850) или списка (например, FSP ATX-400PNF) на боковую наклейку.

Источники питания, у которых такая информация не указана (например, Gembird PSU7 550W), сразу же заставляют усомниться в качестве исполнения и соответствии заявленной мощности реальной.

Остальные параметры блоков питания не регламентируются, но не менее важны. Определить эти параметры возможно только проведя различные тесты с блоком питания.

Диапазон рабочих напряжений

Под диапазоном рабочих напряжений подразумевают интервал значений сетевого напряжения, при котором блок питания сохраняет работоспособность и значения своих паспортных параметров. Сейчас все чаще производятся блоки питания с АККМ (активный корректор коэффициента мощности), который позволяет расширить диапазон рабочих напряжений от 110 до 230. Также имеются блоки питания с малым рабочим диапазоном напряжений, например блок питания компании FPS FPS400-60THN-P имеет диапазон от 220 до 240. В результате этот блок питания, включенный даже в паре с массовым источником бесперебойного питания, будет выключаться при падениях напряжения в сети. Это вызвано тем, что обычный ИБП стабилизирует выходное напряжение в диапазоне 220 В +/- 5%. То есть минимальное напряжение для перехода на батарею составит 209 (а если учесть медленность переключения реле, то напряжение может оказаться еще меньше), что ниже рабочего напряжения блока питания.

Внутреннее сопротивление

Внутреннее сопротивление характеризует внутренние потери блока питания при протекании тока. Внутреннее сопротивление по типу можно разделить на два вида: обычное по постоянному току и дифференциальное по переменному току.

Эквивалентная схема замещения блока питания.

Сопротивление по постоянному току складывается из сопротивлений компонентов, из которых построен блок питания: сопротивление проводов, сопротивление обмоток трансформатора, сопротивление проводов дросселя, сопротивление дорожек печатной платы и др. Из-за наличия этого сопротивления с ростом загруженности блока питания напряжение падает. Это сопротивление можно увидеть, построив кросс-нагрузочную характеристику БП. Для уменьшения этого сопротивления в блоках питания работают различные схемы стабилизации.

Кросс-нагрузочная характеристика блока питания.

Дифференциальное сопротивление характеризует внутренние потери блока питания при протекании переменного тока. Это сопротивление еще называется электрическим импедансом. Уменьшить это сопротивление наиболее сложно. Для его уменьшения в блоке питания используется ФНЧ. Для уменьшения импеданса не достаточно установить в блок питания конденсаторы большой емкости и катушки с большой индуктивностью. Необходимо еще чтобы конденсаторы имели низкое последовательное сопротивление (ESR), а дроссели были изготовлены из толстого провода. Реализовать это физически очень сложно.

Пульсации выходных напряжений

Блок питания представляет собой преобразователь, который не один раз преобразовывает напряжение с переменного в постоянное. Вследствие этого на выходе его линий присутствуют пульсации. Пульсации представляют собой резкое изменение напряжения в течение короткого интервала времени. Главная проблема пульсаций в том, что если в схеме или устройстве не стоит фильтр в цепи питания или он плохой, то эти пульсации проходят по всей схеме, искажая ее рабочие характеристики. Это можно увидеть, например, если выкрутить громкость колонок на максимум во время отсутствия сигналов на выходе звуковой карты. Будут слышны различные шумы. Это и есть пульсации, но не обязательно это шумы блока питания. Но если в работе обычного усилителя от пульсаций большого вреда нет, увеличиться только уровень шумов, то, например, в цифровых схемах и компараторах они могут привести к ложному переключению или неправильному восприятию входной информации, что приводит к ошибкам или неработоспособности устройства.

Форма выходных напряжений блока питания Antec Signature SG-850.

Стабильность напряжений

Далее рассмотрим такую характеристику как, стабильность напряжений, выдаваемых блоком питания. В процессе работы, какой идеальный не был бы блок питания, его напряжения изменяются. Увеличение напряжения вызывает в первую очередь увеличение токов покоя всех схем, а также изменение параметров схем. Так, например, для усилителя мощности увеличение напряжения увеличивает его выходную мощность. Увеличенную мощность могут не выдержать некоторые электронные детали и сгореть. Это же увеличение мощности приводит к росту рассеиваемой мощности электронными элементами, а, следовательно, к росту температуры этих элементов. Что приводит к перегреву и/или изменению характеристик.

Снижение напряжения наоборот уменьшает ток покоя, и также ухудшает характеристики схем, например амплитуду выходного сигнала. При снижении ниже определенного уровня определенные схемы перестают работать. Особенно к этому чувствительна электроника жестких дисков.

Допустимые отклонения напряжения на линиях блока питания описаны в стандарте ATX и в среднем не должны превышать ±5% от номинала линии.

Для комплексного отображения величины просадки напряжений используют кросс-нагрузочную характеристику. Она представляет собой цветовое отображение уровня отклонения напряжения выбранной линии при нагрузке двух линий: выбранной и +12В.

Коэффициент полезного действия

Перейдем теперь к коэффициенту полезного действия или сокращенно КПД. Со школы многие помнят - это отношение полезной работы к затраченной. КПД показывает сколько из потребленной энергии превратилось в полезную энергию. Чем выше КПД, тем меньше надо платить за электроэнергию потребляемую компьютером. Большинство качественных блоков питания имеют схожий КПД, он варьирует в диапазоне не больше 10%, но КПД блоков питания с ПККМ (PPFC) и АККМ (APFC) существенно выше.

Коэффициент мощности

Как параметр, на который следует обращать внимание при выборе БП, коэффициент мощности менее значим, но от него зависят другие величины. При малом значении коэффициента мощности будет и малое значение КПД. Как было отмечено выше, корректоры коэффициента мощности приносят множество улучшений. Больший коэффициент мощности приведет к снижению токов в сети.

Неэлектрические параметры и характеристики блоков питания

Обычно, как и для электрических характеристик, неэлектрические параметры в паспорте указывается далеко не все. Хотя неэлектрические параметры блока питания также важны. Перечислим основные из их:

  • диапазон рабочих температур;
  • надежность блока питания (время наработки на отказ);
  • уровень шума создаваемый блоком питания при работе;
  • частота вращения вентилятора блока питания;
  • вес блока питания;
  • длина питающих кабелей;
  • удобность в использовании;
  • экологичность блока питания;
  • соответствие государственным и международным стандартам;
  • габариты блока питания.

Большинство неэлектрических параметров понятны всем пользователям. Однако остановимся на более актуальных параметрах. Большинство современных блоков питания работают тихо, они имеют уровень шума около 16 дБ. Хотя даже в блок питания с паспортным уровнем шума 16 дБ может быть установлен вентилятор с частотой вращения 2000 об/мин. В этом случае, при нагрузке блока питания около 80%, схема управления скоростью вращения вентилятора включит его на максимальные обороты, что приведет к появлению значительного шума, порою более 30 дБ.

Также необходимо уделять внимание удобству и эргономике блока питания. Использование модульного подключения кабелей питания имеет массу достоинств. Это и более удобное подключение устройств, меньше занятого пространства в корпусе компьютера, что в свою очередь не только удобно, но улучшает охлаждение компонентов компьютера.

Стандарты и сертификаты

При покупке БП, в первую очередь необходимо посмотреть на наличие сертификатов и на соответствие его современным международным стандартам. На блоках питания чаще всего можно встретить указание следующих стандартов:

    RoHS, WEEE - не содержит вредных веществ;

    UL, cUL - сертификат на соответствие своим техническим характеристикам, а также требованиям безопасности для встроенных электроприборов;

    CE - сертификат который показывает, что блок питания соответствует строжайшим требованиям директив европейского комитета;

    ISO - международный сертификат качества;

    CB - международный сертификат соответствия своим техническим характеристикам;

    FCC - соответствие нормам электромагнитных наводок (EMI) и радионаводок (RFI), генерируемых блоком питания;

    TUV - сертификат соответствия требованиям международного стандарта ЕН ИСО 9001:2000;

    ССС - сертификат Китая соответствия безопасности, электромагнитным параметрам и защите окружающей среды.

Также есть компьютерные стандарты форм-фактора АТХ, в котором определены размеры, конструкция и многие другое параметры блока питания, включая допустимые отклонения напряжений при нагрузке. Сегодня существуют несколько версий стандарта АТХ:

  • ATX 1.3 Standard;
  • ATX 2.0 Standard;
  • ATX 2.2 Standard;
  • ATX 2.3 Standard.

Отличие версий стандартов АТХ в основном касается введения новых разъемов и новых требованиям к линиям питания блока питания.

Когда возникает необходимость покупки нового блока питания ATX, то вначале необходимо определится с мощностью, которая необходима для питания компьютера, в который этот БП будет установлен. Для ее определения достаточно просуммировать мощности компонентов, используемых в системе, например воспользовавшись калькулятором от outervision.com . Если нет такой возможности, то можно исходить из правила, что для среднестатистического компьютера с одной игровой видеокартой вполне хватает блока питания мощностью 500-600 ватт.

Учитывая, что большинство параметров блоков питания можно узнать только протестировав его, следующим этапом настоятельно рекомендуем ознакомиться с тестами и обзорами возможных претендентов - моделей блоков питания, которые доступны в вашем регионе и удовлетворяют ваши запросы как минимум по обеспечиваемой мощности. Если же таковой возможности нет, то выбирать необходимо по соответствию блока питания современным стандартам (чем большему числу, тем лучше), при этом желательно наличие в блоке питания схемы АККМ (APFC). Приобретая блок питания, также важно включить его, по возможности прямо на месте покупки или сразу по приходу домой, и проследить, как он работает, чтоб источник питания не издавал писков, гудений или другого постороннего шума.

В общем, необходимо выбрать блок питания, который был бы мощным, качественно сделанным, с хорошими заявленными и реальными электрическими параметрами, а также окажется удобным в эксплуатации и тихим во время работы, даже при высокой нагрузке на него. И ни в коем случае при покупке источника питания не стоит экономить пару долларов. Помните, что от работы этого устройства главным образом зависит стабильность, надежность и долговечность работы всего компьютера.

Статья прочитана 163124 раз(а)

Подписаться на наши каналы

Современные блоки питания для ПК являются довольно сложными устройствами. При покупке компьютера мало кто обращает внимание на марку предустановленного в системе БП. Впоследствии некачественное или недостаточное питание может вызвать ошибки в программной среде, стать причиной потери данных на носителях и даже привести к выходу из строя электроники ПК. Понимание хотя бы базовых основ и принципов функционирования блоков питания, а также умение определить качественное изделие позволит избежать различных проблем и поможет обеспечить долговременную и бесперебойную работу любого компьютера.

Компьютерный блок питания состоит из нескольких основных узлов. Детальная схема устройства представлена на рисунке. При включении сетевое переменное напряжение подается на входной фильтр , в котором сглаживаются и подавляются пульсации и помехи. В дешевых блоках этот фильтр часто упрощен либо вообще отсутствует.

Далее напряжение попадает на инвертор сетевого напряжения . В сети проходит переменный ток, который меняет потенциал 50 раз в секунду, т. е. с частотой 50 Гц. Инвертор же повышает эту частоту до десятков, а иногда и сотен килогерц, за счет чего габариты и масса основного преобразующего трансформатора сильно уменьшаются при сохранении полезной мощности. Для лучшего понимания данного решения представьте себе большое ведро, в котором за раз можно перенести 25 л воды, и маленькое ведерко емкостью 1 л, в котором можно перенести такой же объем за то же время, но воду придется носить в 25 раз быстрее.

Импульсный трансформатор преобразовывает высоковольтное напряжение от инвертора в низковольтное. Благодаря высокой частоте преобразования мощность, которую можно передать через такой небольшой компонент, достигает 600-700 Вт. В дорогих БП встречаются два или даже три трансформатора.

Рядом с основным трансформатором обычно имеются один или два меньших, которые служат для создания дежурного напряжения, присутствующего внутри блока питания и на материнской плате всегда, когда к БП подключена сетевая вилка. Этот узел вместе со специальным контроллером отмечен на рисунке цифрой .

Пониженное напряжение поступает на быстрые выпрямительные диодные сборки, установленные на мощном радиаторе . Диоды, конденсаторы и дроссели сглаживают и выпрямляют высокочастотные пульсации, позволяя получить на выходе почти постоянное напряжение, которое идет далее на разъемы питания материнской платы и периферийных устройств.

В недорогих блоках применяется так называемая групповая стабилизация напряжений. Основной силовой дроссель сглаживает только разницу между напряжениями +12 и +5 В. Подобным образом достигается экономия на количестве элементов в БП, но делается это за счет снижения качества стабилизации отдельных напряжений. Если возникает большая нагрузка на каком-то из каналов, напряжение на нем снижается. Схема коррекции в блоке питания, в свою очередь, повышает напряжение, стараясь компенсировать недостачу, но одновременно возрастает напряжение и на втором канале, который оказался малонагруженным. Налицо своеобразный эффект качелей. Отметим, что дорогие БП имеют выпрямительные цепи и силовые дроссели, полностью независимые для каждой из основных линий.

Кроме силовых узлов в блоке есть дополнительные - сигнальные. Это и контроллер регулировки оборотов вентиляторов, часто монтируемый на небольших дочерних платах , и схема контроля за напряжением и потребляемым током, выполненная на интегральной микросхеме . Она же управляет работой системы защиты от коротких замыканий, перегрузки по мощности, перенапряжения или, наоборот, слишком низкого напряжения.

Зачастую мощные БП оснащены активным корректором коэффициента мощности. Старые модели таких блоков имели проблемы совместимости с недорогими источниками бесперебойного питания. В момент перехода подобного устройства на батареи напряжение на выходе снижалось, и корректор коэффициента мощности в БП интеллектуально переключался в режим питания от сети 110 В. Контроллер бесперебойного источника считал это перегрузкой по току и послушно выключался. Так вели себя многие модели недорогих ИБП мощностью до 1000 Вт. Современные блоки питания практически полностью лишены данной «особенности».

Многие БП предоставляют возможность отключать неиспользуемые разъемы, для этого на внутренней торцевой стенке монтируется плата с силовыми разъемами . При правильном подходе к проектированию такой узел не влияет на электрические характеристики блока питания. Но бывает и наоборот, некачественные разъемы могут ухудшать контакт либо неверное подключение приводит к выходу комплектующих из строя.

Для подключения комплектующих к БП используется несколько стандартных типов штекеров: самый крупный из них - двухрядный - служит для питания материнской платы. Ранее устанавливались двадцатиконтактные разъемы, но современные системы имеют большую нагрузочную способность, и в результате штекер нового образца получил 24 проводника, причем часто добавочные 4 контакта отсоединяются от основного набора. Кроме силовых каналов нагрузки, на материнскую плату передаются сигналы управления (PS_ON#, PWR_OK), а также дополнительные линии (+5Vsb, -12V). Включение проводится только при наличии на проводе PS_ON# нулевого напряжения. Поэтому, чтобы запустить блок без материнской платы, нужно замкнуть контакт 16 (зеленый провод) на любой из черных проводов («земля»). Исправный БП должен заработать, и все напряжения сразу же установятся в соответствии с характеристиками стандарта ATX. Сигнал PWR_OK служит для сообщения материнской плате о нормальном функционировании схем стабилизации БП. Напряжение +5Vsb используется для питания USB-устройств и чипсета в дежурном режиме (Standby) работы ПК, а -12 - для последовательных портов RS-232 на плате.

Стабилизатор процессора на материнской плате подключается отдельно и использует четырех- либо восьмиконтактный кабель, подающий напряжение +12 В. Питание мощных видеокарт с интерфейсом PCI-Express осуществляется по одному 6-контактному либо по двум разъемам для старших моделей. Существует также 8-контактная модификация данного штекера. Жесткие диски и накопители с интерфейсом SATA используют собственный тип контактов с напряжениями +5, +12 и +3,3 В. Для старых устройств подобного рода и дополнительной периферии имеется 4-контактный разъем питания с напряжениями +5 и +12 В (так называемый molex).

Основное потребление мощности всех современных систем, начиная с Socket 775, 754, 939 и более новых, приходится на линию +12 В. Процессоры могут нагружать данный канал токами до 10-15 А, а видеокарты до 20-25 А (особенно при разгоне). В итоге мощные игровые конфигурации с четырехъядерными CPU и несколькими графическими адаптерами запросто «съедают» 500-700 Вт. Материнские платы со всеми распаянными на РСВ контроллерами потребляют сравнительно мало (до 50 Вт), оперативная память довольствуется мощностью до 15-25 Вт для одной планки. А вот винчестеры, хоть они и неэнергоемкие (до 15 Вт), но требуют качественного питания. Чувствительные схемы управления головками и шпинделем легко выходят из строя при превышении напряжения +12 В либо при сильных пульсациях.

На наклейках блоков питания часто указывают наличие нескольких линий +12 В, обозначаемых как +12V1, +12V2, +12V3 и т. д. На самом деле в электрической и схемотехнической структуре блока они в абсолютном большинстве БП представляют собой один канал, разделенный на несколько виртуальных, с различным ограничением по току. Данный подход применен в угоду стандарту безопасности EN-60950, который запрещает подводить мощность свыше 240 ВА на контакты, доступные пользователю, поскольку при возникновении замыкания возможны возгорания и прочие неприятности. Простая математика: 240 ВА/12 В = 20 А. Поэтому современные блоки обычно имеют несколько виртуальных каналов с ограничением по току каждого в районе 18-20 А, однако общая нагрузочная способность линии +12 В не обязательно равна сумме мощностей +12V1, +12V2, +12V3 и определяется возможностями используемого в конструкции преобразователя. Все заявления производителей в рекламных буклетах, расписывающие огромные преимущества от множества каналов +12 В, - не более чем умелая маркетинговая уловка для непосвященных.

Многие новые блоки питания выполнены по эффективным схемам, поэтому выдают большую мощность при использовании маленьких радиаторов охлаждения. Примером может служить распространенная платформа FSP Epsilon (FSPxxx-80GLY/GLN), на базе которой построены БП нескольких производителей (OCZ GameXStream, FSP Optima/Everest/Epsilon).

Современные мощные видеокарты потребляют большое количество энергии, поэтому давно подключаются отдельными кабелями к БП независимо от материнской платы. Новейшие модели оснащаются шести- и восьмиконтактными штекерами. Часто последний имеет отстегивающуюся часть, для удобства подсоединения к меньшим разъемам питания видеокарт.

Надеемся, что после рассмотрения основных узлов блоков питания читателям уже понятно: за последние годы конструкция БП стала значительно сложнее, она подверглась модернизации и сейчас для полноценного всестороннего тестирования требует квалифицированного подхода и наличия специального оборудования. Невзирая на общее повышение качества доступных рядовому пользователю блоков, существуют и откровенно неудачные модели. Поэтому при выборе конкретного экземпляра БП для вашего компьютера нужно ориентироваться на подробные обзоры данных устройств и внимательно изучать каждую модель перед покупкой. Ведь от блока питания зависит сохранность информации, стабильность и долговечность работы компонентов ПК в целом.

Краткий словарь терминов

Суммарная мощность - долговременная мощность потребления нагрузкой, допустимая для блока питания без его перегрева и повреждений. Измеряется в ваттах (Вт, W).

Конденсатор, электролит - устройство для накопления энергии электрического поля. В БП используется для сглаживания пульсаций и подавления помех в схеме питания.

Дроссель - свернутый в спираль проводник, обладающий значительной индуктивностью при малой собственной емкости и небольшом активном сопротивлении. Данный элемент способен запасать магнитную энергию при протекании электрического тока и отдавать ее в цепь в моменты больших токовых перепадов.

Полупроводниковый диод - электронный прибор, обладающий разной проводимостью в зависимости от направления протекания тока. Применяется для формирования напряжения одной полярности из переменного. Быстрые типы диодов (диоды Шоттки) часто используются для защиты от перенапряжения.

Трансформатор - элемент из двух или более дросселей, намотанных на единое основание, служащий для преобразования системы переменного тока одного напряжения в систему тока другого напряжения без существенных потерь мощности.

ATX - международный стандарт, описывающий различные требования к электрическим, массогабаритным и другим характеристикам корпусов и блоков питания.

Пульсации - импульсы и короткие всплески напряжения на линии питания. Возникают из-за работы преобразователей напряжения.

Коэффициент мощности, КМ (PF) - соотношение активной потребляемой мощности от электросети и реактивной. Последняя присутствует всегда, когда ток нагрузки по фазе не совпадает с напряжением сети либо если нагрузка является нелинейной.

Активная схема коррекции КМ (APFC) - импульсный преобразователь, у которого мгновенный потребляемый ток прямо пропорционален мгновенному напряжению в сети, то есть имеет только линейный характер потребления. Этот узел изолирует нелинейный преобразователь самого БП от электросети.

Пассивная схема коррекции КМ (PPFC) - пассивный дроссель большой мощности, который благодаря индуктивности сглаживает импульсы тока, потребляемые блоком. На практике эффективность подобного решения довольно низкая.

Характеристики блоков питания

Существует несколько параметров, которые определяют входную и выходную мощность, а также рабочие характеристики БП. Эти параметры являются общими для большинства блоков питания.

Загрузка блока питания

Вне зависимости от этих характеристик, если вы хотите правильно и точно протестировать блок питания , убедитесь, что хотя бы по одной линии электропитания имеется нагрузка, а ещё лучше, чтобы она была по всем трём линиям. Это - одна из причин, по которым мы рекомендуем проверять блок питания, когда он установлен в компьютер, а не извлечён. В качестве импровизированного тестового стенда вы можете использовать запасную материнскую плату и один или несколько жёстких дисков, чтобы обеспечить нагрузку по линиям питания.

Мощность блока питания

Системный интегратор должен предоставлять технические спецификации всех компонентов, которые используются в системе. Данная информация обычно отражена в справочном руководстве, но спецификации блока питания , как правило, можно узнать и по стикеру на нём. Производители БП также обычно предоставляют такую информацию, что более предпочтительно, если вы можете определить производителя и проверить данные напрямую или через интернет.

К входным характеристикам относится напряжение сети переменного тока, тогда как характеристики на выходе подразумевают перечень силы тока в амперах по каждой линии. Умножив силу тока на напряжение, можно рассчитать мощность блока питания для каждой линии:

Ватты (Вт) = Вольты (В) х Амперы (А)

Например, если для одной из линий +12 В указана сила тока 8 А, мощность равна 96 Вт, согласно данной формуле. Сложив напряжение/силу тока на каждом из основных выходов, можно рассчитать общую мощность блока питания . Отметим, что в данных вычислениях участвуют только положительные напряжения. Отрицательные напряжения, линии Standby, Power_Good и другие вспомогательные сигналы при вычислении мощности БП не учитываются.

В следующей таблице приведены расчёты для нескольких блоков питания различной мощности, соответствующим стандартам ATX12V/EPS12V, производства компании Corsair (www.corsair.com).

Типичные характеристики БП ATX12V/EPS12V, значения на выходах
Модель VX450W VX550W HX650W HX750W HX850W TX950W AX1200
+12 В (A) 33 41 52 62 70 78 100
-12 В (A) 0.8 0.8 0.8 0.8 0.8 0.8 0.8
+5 VSB (A) 2.5 3 3 3 3 3 2.5
+5 В (A) 20 28 30 25 25 25 30
+3.3 В (A) 20 30 24 25 25 25 30
Max +5 В/+3.3 В (Вт) 130 140 170 150 150 150 180
Заявленная мощность (Вт) 450 550 650 750 850 950 1200
Расчётная мощность (Вт) 548 657 819 919 1015 1111 1407

Фактически, все блоки питания достигают максимальных значений по линиям +3,3 В и +5 В. Расчётная максимальная мощность подразумевает общее максимальное потребление по всем линиям и в реальных условиях не достигается. Поэтому заявленная производителем мощность БП, как правило, меньше, чем расчётная.

Хотя купленные в магазине ПК часто оснащены маломощными блоками питания на 350 Вт или меньше, высокая мощность БП часто рекомендуется для полноценных настольных систем. К сожалению, даже относительно высоким оценкам мощности, заявленным для дешёвых блоков питания, не всегда можно доверять. Например, мы видели блок питания с заявленной мощностью 650 Вт, фактическая мощность которого составляла честные 200 Вт. Ещё одна проблема заключается в том, что всего несколько компаний выпускают блоки питания для ПК. Большинство БП, которые вы можете встретить на прилавках магазинов, сделаны одним из нескольких производителей, но могут продаваться под разными торговыми марками, названиями, моделями и т.д. Поскольку далеко не каждый покупатель имеет оборудование, с помощью которого можно протестировать реальную мощность на выходах, стоит доверять лишь известным, проверенным маркам, которые предлагают качественные БП.

Большинство блоков питания считаются универсальными, то есть могут использоваться в любой точке мира. Иными словами, они могут работать в сетях переменного тока 127 В /50 Гц (США), 240 В/50 Гц (Европа и некоторые другие страны), 220 В/50 Гц (Россия). Переключение в соответствующий режим входящего тока, как правило, осуществляется в автоматическом режиме, хотя до сих пор иногда встречаются БП, оснащённые тумблером 127/240 В на задней панели.

В сети переменного тока напряжение может колебаться, что учитывается при разработке дизайна блока питания, имеющего специальные цепи стабилизации на входе перед импульсным преобразователем напряжения. Как правило, учитывается эффект "проседания" напряжения, то есть его снижения на пути к розетке в квартире. По этой причине блок питания , рассчитанный на европейский стандарт 240 В, может работать в российских сетях 220 В.

Внимание! Если ваш блок питания не переключается автоматически, убедитесь, что тумблер переключения входящего напряжения установлен правильно. Если вы подключите блок питания в розетку 120 В с тумблером, установленным на 240 В, никаких неприятных последствий не произойдёт, но БП не будет работать до тех пор, пока вы не переключите тумблер. С другой стороны, если тумблер зафиксирован на 120 В, а блок питания подключается к розетке 220/240 В, он может выйти из строя.

Прочие характеристики и сертификаты

Помимо мощности, существуют и иные характеристики и функции, которыми наделяют свои изделии производители блоков питания.

Мы имели дело с огромным количеством различных компьютеров и наш опыт заключается в том, что если в помещении есть несколько компьютеров и в сети происходит внезапное падение напряжение, то более качественный и мощный блок питания позволит сохранить компьютер в рабочем состоянии, в то время как ПК со слабыми блоками питания отключаются.

Более качественный блок питания также помогает защищать вашу систему. В частности, используя блоки питания таких производителей, как PC Power и Cooling, вы можете не переживать за безопасность компонентов ПК в следующих случаях:

  • 100% отключение энергии любой продолжительности.
  • Кратковременное падение напряжения.
  • Пиковое увеличение напряжения до 2500 В на входе (например, в результате удара молнии или кратковременного скачка напряжения в сети).

Качественные блоки питания имеют крайне низкую величину тока, подведённого к заземлению (менее 500 мА). Это важно с точки зрения безопасности ПК, если он не подключён к заземлению.

Как можно видеть, дополнительные характеристики блоков питания достаточно жёсткие и подобные возможности можно встретить, только когда речь идёт о достаточно дорогих изделиях.

Вы можете также встретить и много других критериев оценки БП. Блок питания - это тот компонент ПК, на который многие покупатели обращают внимание в последнюю очередь, поэтому многие системные интеграторы также не уделяют должного внимания выбору БП. В конце концов, продавцу ПК выгоднее установить в компьютер более производительный процессор или жёсткий диск большего объёма, чем оснастить его более качественным блоком питания.

Именно по этой причине при выборе компьютера либо апгрейде имеющегося необходимо очень внимательно отнестись к качеству блока питания , который вы планируете использовать. В то же время, различные характеристики и значения, которые приводятся в спецификации блоков питания, многих покупателей могут ввести в ступор. Поэтому здесь мы приводим перечень наиболее распространённых параметров блоков питания:

  • Наработка на отказ (Mean Time Between Failures - MTBF) или наработка до отказа (Mean Time To Failure - MTTF). Расчётный интервал времени, выраженный в часах, в течении которого предполагается, что блок питания будет работать до выхода из строя. Блоки питания обычно имеют рейтинги MTBF (например, 100 000 часов или более), которые, очевидно, не являются результатом реальных эмпирических тестов. Фактически, производители используют опубликованные стандарты для вычисления MTBF, основанные на рейтингах отказов отдельных компонентов блока питания. Цифры MTBF для блоков питания часто включают уровень нагрузки, который предполагается (в % от общей мощности), а также температуру окружающей среды, при которой данные значения актуальны.
  • Входной (или рабочий) диапазон. Означает диапазон напряжений, с которыми может работать БП. Например, для американской сети переменного тока 120 В входной диапазон, как правило, составляет 90-135 В, а для европейских сетей 240 В типичен диапазон 180-270 В.
  • Пиковый ток при включении. Максимальная величина тока на момент времени непосредственно после включения БП, выраженная в амперах при заданном напряжении. Чем ниже эта величина, тем меньший температурный шок система испытывает.
  • Время отключения. Количество времени (в миллисекундах), в течение которого БП может поддерживать уровни напряжения в соответствии со значениями по спецификации в случае внезапного отключения входящего тока. Это позволяет компьютеру продолжать работу после кратковременного падения напряжения в сети без перезагрузки или отключения. Величины в 15-30 мс являются стандартными для современных БП, но чем больше данная величина, тем лучше. Согласно спецификации "Power Supply Design Guide for Desktop Platform Form Factors", минимальное время отключения составляет 16 мс. Время отключения также сильно зависит от текущей нагрузки на блок питания. Время отключения, как правило, отражает минимальное время, измеренное под максимальной загрузкой. Если нагрузка снижается, то время отключения пропорционально возрастает. Например, если блок питания на 1000 Вт имеет время задержки 20 мс согласно своей спецификации (измеренное под нагрузкой 1000 Вт), то при нагрузке 500 Вт (половина заявленной мощности) время загрузки увеличивается вдвое, а при нагрузке 250 Вт - в четыре раза. На самом деле, это одна из причин приобрести более мощный блок питания, чем требуется с учётом требований компонентов системы.
  • Время перехода. Количество времени (в миллисекундах), которое требуется блоку питания, чтобы восстановить напряжения на выходах (в соответствии со спецификацией) после перехода в другой режим работы. Иными словами, речь идёт о времени, за которое напряжения на выходах блока питания стабилизируются при включении или отключении одного из компонентов ПК. Блок питания проверяет нагрузку по выходам через регулярные интервалы времени. Когда устройство отключается (например, оптический привод останавливает вращение диска), блок питания в течение короткого промежутка времени может продолжать подводить высокий уровень тока по разъёму питания. Это излишнее напряжение называется "выбросом", а время перехода означает промежуток времени, который требуется для возвращения к стандартным значениям напряжения на выходах согласно спецификации. Изменение режима работы какого-либо из компонентов ПК рассматриваются как скачок напряжения и могут вызывать сбои и зависания компьютера, так как влияют на подаваемые к другим выходам напряжения. Будучи одной из основных проблем импульсных блоков питания, когда они только появились, "выбросы" были заметно снижены в последние годы. Значения времени перехода часто выражаются как временные промежутки, но иногда они выражаются в предельной величине изменения напряжений на выходах (например, в спецификации говорится, что "уровень напряжения на выходе при изменении режима нагрузки может меняться в пределах 20%).
  • Защита от превышения напряжения. Данный параметр определяет показатели для каждого выхода, при которых блок питания отключает тот или иной выход. Могут выражаться либо в %% от значения по спецификации (например, 120% для +3,3 В и +5 В), либо в реальных значениях напряжения (например, +4,6 В для выхода +3,3 В и +7 В для выхода +5 В).
  • Максимальный ток нагрузки. Максимальное значение тока (в амперах), который может безопасно проходить через тот или иной выход. Значения выражаются в индивидуальной силе тока для каждого напряжения. Опираясь на эти данные, вы можете не только рассчитать общую мощность блока питания, но и проверить, сколько устройств можно "повесить" на тот или иной выход.
  • Минимальный ток нагрузки. Определяет наименьшее значение тока (в амперах), которое должно подаваться на конкретный выход для обеспечения его работы. Если ток, потребляемый на выходе, снижается ниже минимального, то блок питания может выйти из строя или автоматически отключится.
  • Стабилизация нагрузки (или стабилизация напряжения нагрузки). Когда ток по тому или иному выходу увеличивается либо снижается, значения напряжения также немного изменяются - как правило, снижаются, если ток увеличивается. Стабилизация нагрузки означает изменение напряжения на выходе, когда происходит переход от минимальной нагрузки к максимальной (или наоборот). Значения выражаются в +/- %%, обычно в диапазоне от +/-1% до +/-5% для выходов +3,3 В, +5 В и +12 В.
  • Стабилизация сетевого напряжения. Изменение выходного напряжения при колебаниях входящего переменного тока от самого низкого до самого высокого значения (либо наоборот). Блок питания должен использовать любой переменной ток в пределах рабочего диапазона, сохраняя на выходе стабильное напряжение (допустимы колебания в пределах 1% или ниже).
  • Эффективность. Соотношение мощности БП на выходах к потребляемой мощности. Стандартными на сегодняшний день считаются значения 65-85%. Оставшиеся 15-35% превращаются в тепловую энергию в ходе процесса преобразования тока из переменного в постоянный. Хотя более высокая эффективность означает, что блок питания будет меньше греться (и это хорошо) и более низкие расходы на оплату электроэнергии. Ради более высокой эффективности блока питания не должны приноситься в жертву точность, стабильность и надёжность, также как жёсткая стабилизация сетевого напряжения и другие характеристики.
  • Шумы, перепады, периодические и случайные отклонения сети переменного тока. Средняя величина колебаний напряжения на выходах БП в зависимости от всех эффектов сети переменного тока, связанных с перепадами напряжения, как правило, изменяющаяся в милливольтах или процентах от номинального значения. Чем ниже данный показатель, тем лучше. Для качественных блоков питания перепады напряжения обычно составляют 1% от номинального напряжения на выходе (или меньше). Следовательно, для выхода +5 В они могут достигать 0,05 В или 50 мВ (милливольт). Перепады напряжения могут быть вызваны внутренними особенностями конструкции блока питания, колебаниями напряжения в сети переменного тока либо случайными наводками.

Понравилась статья? Поделитесь ей