Контакты

Светодиод для лазерной указки. Диодные сборки. Диод с квантовыми ямами

Многие из тех домашних умельцев, которые в своей мастерской занимаются изготовлением и декоративным оформлением изделий из древесины и других материалов, наверняка задумывались над тем, как сделать лазерный гравер своими руками. Наличие такого оборудования, серийные модели которого стоят достаточно дорого, позволяет не только наносить на поверхность обрабатываемого изделия сложнейшие рисунки с высокой точностью и детализацией, но и осуществлять лазерную резку различных материалов.

Самодельный лазерный гравер, который обойдется значительно дешевле, чем серийная модель, можно изготовить даже в том случае, если вы не обладаете глубокими знаниями в электронике и механике. Лазерный гравер предлагаемой конструкции собирается на аппаратной платформе «Ардуино» (Arduino) и имеет мощность 3 Вт, тогда как у промышленных моделей этот параметр составляет не менее 400 Вт. Однако даже такая невысокая мощность позволяет использовать данный аппарат для резки изделий из пенополистирола, пробковых листов, пластика и картона, а также выполнять качественную лазерную гравировку.

Необходимые материалы

Для того чтобы самостоятельно изготовить лазерный гравер на Arduino, потребуются следующие расходные материалы, механизмы и инструменты:

  • аппаратная платформа Arduino R3;
  • плата Proto Board, оснащенная дисплеем;
  • шаговые двигатели, в качестве которых можно использовать электромоторы из принтера или из DVD-плеера;
  • лазер, мощность которого составляет 3 Вт;
  • устройство для охлаждения лазера;
  • регулятор напряжения постоянного тока DC-DC;
  • транзистор MOSFET;
  • электронные платы, при помощи которых осуществляется управление двигателями лазерного гравера;
  • выключатели концевого типа;
  • корпус, в котором можно разместить все элементы конструкции самодельного гравера;
  • зубчатые ремни и шкивы для их установки;
  • шарикоподшипники различных типоразмеров;
  • четыре деревянных доски (две из них с размерами 135х10х2 см, а две другие – 125х10х2 см);
  • четыре металлических стержня круглого сечения, диаметр которых составляет 10 мм;
  • болты, гайки и винты;
  • смазочный материал;
  • стяжки-хомуты;
  • компьютер;
  • сверла различного диаметра;
  • циркулярная пила;
  • наждачная бумага;
  • тиски;
  • стандартный набор слесарных инструментов.

Электрическая часть самодельного лазерного гравера

Основным элементом электрической схемы представленного устройства является лазерный излучатель, на вход которого должно подаваться постоянное напряжение со значением, не превышающим допустимых параметров. Если не соблюсти данное требование, лазер может просто сгореть. Лазерный излучатель, используемый в гравировальной установке представленной конструкции, рассчитан на напряжение 5 В и силу тока, не превышающую 2,4 А, поэтому настройка регулятора DC-DC должна быть выполнена на силу тока 2 А и напряжение до 5 В.

Транзистор MOSFET, который является важнейшим элементом электрической части лазерного гравера, необходим для того, чтобы, получая сигнал от контроллера «Ардуино», включать и выключать лазерный излучатель. Электрический сигнал, вырабатываемый контроллером, является очень слабым, поэтому воспринимать его, а затем отпирать и запирать контур питания лазера может только транзистор MOSFET. В электрической схеме лазерного гравера такой транзистор устанавливается между плюсовым контактом лазера и минусовым регулятора постоянного тока.

Шаговые электродвигатели лазерного гравера подключаются через одну электронную плату управления, что обеспечивает синхронность их работы. Благодаря такому подключению зубчатые ремни, приводимые в движение несколькими двигателями, не провисают и сохраняют стабильное натяжение в процессе своей работы, что обеспечивает качество и точность выполняемой обработки.

Следует иметь в виду, что лазерный диод, используемый в самодельной гравировальной установке, не должен перегреваться.

Для этого необходимо обеспечить его эффективное охлаждение. Решается такая задача достаточно просто: рядом с диодом устанавливают обычный компьютерный вентилятор. Чтобы исключить перегрев плат управления работой шаговых электродвигателей, рядом с ними также размещают компьютерные кулеры, так как обычные радиаторы с такой задачей не справляются.

Фотографии процесса сборки электросхемы

Фото-1 Фото-2 Фото-3
Фото-4 Фото-5 Фото-6

Процесс сборки

Самодельный гравировальный станок предложенной конструкции – это устройство челночного типа, один из подвижных элементов которого отвечает за перемещение по оси Y, а два других, спаренных, – за перемещение по оси X. За ось Z, которая также оговаривается в параметрах такого 3D-принтера, принимается глубина, на которую осуществляется прожиг обрабатываемого материала. Глубина отверстий, в которые устанавливаются элементы челночного механизма лазерного гравера, должна составлять не менее 12 мм.

Рамка рабочего стола – размеры и допуски

Фото-1 Фото-2 Фото-3
Фото-4 Фото-5 Фото-6

В качестве направляющих элементов, по которым будет перемещаться рабочая головка лазерного гравировального устройства, могут выступать алюминиевые стержни диаметром не менее 10 мм. Если найти стержни из алюминия не представляется возможным, для этих целей можно использовать стальные направляющие такого же диаметра. Необходимость применения стержней именно такого диаметра объясняется тем, что в таком случае рабочая головка лазерного гравировального устройства не будет провисать.

Изготовление подвижной каретки

Фото-1 Фото-2 Фото-3

Поверхность стержней, которые будут использоваться в качестве направляющих элементов для лазерного гравировального устройства, надо очистить от заводской смазки и тщательно отшлифовать до идеальной гладкости. Затем на них следует нанести смазывающий состав на основе белого лития, который улучшит процесс скольжения.

Установка шаговых двигателей на корпус самодельного гравировального устройства осуществляется при помощи кронштейнов, изготовленных из листового металла. Чтобы сделать такой кронштейн, лист металла, ширина которого приблизительно соответствует ширине самого двигателя, а длина в два раза превышает длину его основания, сгибают под прямым углом. На поверхности такого кронштейна, где будет располагаться основание электромотора, сверлят 6 отверстий, 4 из которых необходимы для фиксации самого двигателя, а два остальных – для крепления кронштейна к корпусу при помощи обычных саморезов.

Для установки на вал электромотора приводного механизма, состоящего из двух шкивов, шайбы и болта, также используется кусок металлического листа соответствующего размера. Чтобы смонтировать такой узел, из металлического листа формируют П-образный профиль, в котором просверливаются отверстия для его крепления к корпусу гравера и для выхода вала электродвигателя. Шкивы, на которые будут надеваться зубчатые ремни, насаживаются на вал приводного электромотора и размещаются во внутренней части П-образного профиля. Надетые на шкивы зубчатые ремни, которые должны приводить в движение челноки гравировального устройства, соединяются с их деревянными основаниями при помощи саморезов.

Установка шаговых двигателей

Фото-1 Фото-2 Фото-3
Фото-4 Фото-5 Фото-6

Установка программного обеспечения

Вашему лазерному гроверу, который должен работать в автоматическом режиме, потребуется не только установка, но и настройка специального программного обеспечения. Важнейшим элементом такого обеспечения является программа, которая позволяет создавать контуры желаемого рисунка и преобразовывать их под расширение, понятное управляющим элементам лазерного гравера. Такая программа имеется в свободном доступе, и ее можно без особых проблем скачать на свой компьютер.

Программа, скачанная на управляющий гравировальным устройством компьютер, распаковывается из архива и устанавливается. Кроме того, вам потребуется библиотека контуров, а также программа, которая будет отправлять данные по создаваемому рисунку или надписи на контроллер «Ардуино». Такую библиотеку (как и программу для передачи данных на контроллер) также можно найти в свободном доступе. Для того чтобы ваша лазерная самоделка работала корректно, а гравировка, выполняемая с ее помощью, была качественной, вам потребуется настройка и самого контроллера под параметры гравировального устройства.

Особенности использования контуров

Если с вопросом о том, как сделать ручной лазерный гравер, вы уже разобрались, то необходимо прояснить и вопрос о параметрах контуров, которые могут наноситься при помощи такого устройства. Такие контуры, внутренняя часть которых не заполняется даже в том случае, если исходный рисунок закрашен, должны передаваться на контроллер гравера файлами не в пиксельном (jpeg), а векторном формате. Это значит, что изображение или надпись, наносимые на поверхность обрабатываемого изделия при помощи такого гравера, будут состоять не из пикселей, а из точек. Такие изображения и надписи можно как угодно масштабировать, ориентируясь на площадь поверхности, на которую они должны быть нанесены.

При помощи лазерного гравера на поверхность обрабатываемого изделия можно нанести практически любой рисунок и надпись, но для этого их компьютерные макеты необходимо перевести в векторный формат. Выполнить такую процедуру несложно: для этого используются специальные программы Inkscape или Adobe Illustrator. Файл, уже переведенный в векторный формат, необходимо преобразовать еще раз, чтобы его смог корректно воспринимать контроллер гравировальной установки. Для такого преобразования используется программа Inkscape Laserengraver.

Окончательная настройка и подготовка к работе

Изготовив лазерный гравировальный станок своими руками и закачав в его управляющий компьютер необходимое программное обеспечение, не приступайте к работе сразу: оборудование нуждается в окончательной настройке и регулировке. В чем заключается такая регулировка? Прежде всего необходимо убедиться, что максимальные перемещения лазерной головки станка по осям X и Y совпадают со значениями, полученными при преобразовании векторного файла. Кроме того, в зависимости от толщины материала, из которого изготовлено обрабатываемое изделие, надо отрегулировать параметры тока, подаваемого на лазерную головку. Делать это нужно для того, чтобы не прожечь изделие, на поверхности которого требуется выполнить гравировку.

Для того чтобы установить на самоделку лазерный модуль или лазерную указку, каретку от принтера необходимо доработать. И я обнаружил, что для этих целей отлично подходит накладка от корпуса компьютера, да и одна из них случайно оказалась под рукой. Бедолага.

Я каким-то чудом умудрился согнуть, подрезать, просверлить и, наконец, прикрутить ее к каретке. Нужно лишь творчески подойти к этому делу и соблюдать точность. Она во время этой мозгосборки является вашим верным товарищем, но может и оказаться худшим врагом, если вы пренебрегаете ей!

Каретка оказалась не под прямым углом к столу сканера, но, на мое счастье, маленькая гаечка спасла день.

Еще до этого я нашел небольшой шкив от кассетного плеера, его то я и установил на каретку, но потом понял, что он сталкивается с направляющей оси X, и его пришлось снять. Но определенно стоит сохранить его на случай последующих доработок.

Шаг 11: Травление печатной платы

После успешных испытаний моего прототипа, собранного на макетной плате и корректно выполняющего некоторые команды G-кода, я приступил к созданию печатной платы. До этого подобные вещи не делал, но являюсь помощником в хим.лаборатории, так что работа с химикатами страха во мне не вызывает.

И снова использовал для этого мозгоруководство Groover-а, взяв от туда макет лазерной платы , который находится в файле формата EagleCAD.

Я зеркально распечатал этот макет на обычной бумаге, наклеил его на фоточувствительную омедненную плату, и дремелем высверлил нужные отверстия. Новомодного автоматического экспозиметра у меня нет, поэтому я просто взял немного спирта и снял защитный лак. С помощью контурной проекторной ручки и линейки прочертил дорожки вручную. Эта мозгоручка оставляет очень красивый блестящий след. Я еще пробовал использовать германский тонкий перманентный маркер (кислотостойкий), но он давал толстые некрасивые линии. А контурной ручкой нужно было лишь раз провести линию, а не несколько, и получался хороший защитный слой.

Травил плату поделки я хлористым железом (III), другие доступные средства мне не нравятся. Одни парят, другие сильно пахнут, третьи, содержащие пероксид, могут взорваться, если держать их в закрытой емкости. Поэтому хлористое железо самый оптимальный вариант, и для хранения, и для утилизации.

Но тем не менее, НЕ ВЫЛИВАЙТЕ его в канализацию! Он разъест канализационные трубы, если они сделаны их меди, и убьет все полезные бактерии в вашем септике.

Шаг 12: Лазерный шилд

Я не знаю как паяются штырьковые контакты (которые соединяются с контактами Arduino) с обратной стороны, поэтому я установил их с верхней стороны платы и протолкнул их.

На всякий случай нарисовал на плате драйвера мозголазера где какие электродетали должны располагаться. Примечание: тестовые запуски без лазера можно проводить и без этой платы.

Список электродеталей

Я приложил список из моего заказа у поставщика электроники, который со всеми описаниями выглядит немного пугающе.

Примечание 1:
В заказе поставщику ошибся с реле, поэтому пришлось разобрать старый блок питания от ПК, который отыскал в своих запасах. Своим «залежам» старой техники я безмерно рад, большая часть электроники до сих пор функционирует, и я храню ее вместо того, чтобы отдать на пункт приема. Они продают ее в Африку как «секонд-хэнд», хотя это не так. Я и построил данный мозгогравер , чтобы показать, что «старая техника» — не хлам. В умелых руках она также ценна, как и деньги.

Примечание 2 (важных):
При подключении Arduino с установленной платой, убедитесь, что сначала подключен внешний источник питания. Я заметил, что подключая Arduino к USB, без подключенного источника питания степперы начинают «кричать», что совсем не здорово.

Шаг 13: Альтернативный лазерный шилд (шилд Easylaser)

Лазерный шилд от Groover-а великолепен, но некоторые вещи не подходят для моего способа управления лазером:
— он не может переключаться в режим микростеппинга шаговых двигателей.
От степперов из DVD, который он использовал, этого не требовалось, но если используешь различные двигатели от разных устройств эта опция может помочь более точно управлять двигателями.
— еще я был не в восторге от реле, контролирующей включение/отключение лазера.
— и наконец, провода идущие от лазерного шилда к лазеру были слишком длинными, думаю более правильно разместить шилд поближе к лазеру.
Итак, резюмируя:

Я доработал драйвер от Groover-а
— переместил плату драйвера, расположил ее на терминальном зажиме для лазерного модуля ,
— добавил перемычки на Easydrivers, активировав тем самым режим микростеппинга.

Апгрейд: самодельщик jduffy54 был так добр, что исправил плату easylaser. Я обновил макет мозгоплаты , перемычки для режима микростеппинга теперь должны работать как и предполагалось.

Шаг 14: Лазерный диод

Использованный мной лазерный диод очень мощный. Это прицельный 300мВт-й, красный лазер 3-го класса, а значит ОБЯЗАТЕЛЬНО нужно использовать защитные очки. Иначе можно получить коньюктивит и катаракту. Это не как с курением, которое возможно приведет к раку. Нет, если луч попадет в глаза, то катаракта вам обеспечена. И даже отраженный от стен луч, намного опаснее, чем если вы посмотрите на солнце. Вы же не хотите рисковать своим зрением. Пауза…

БУДЬТЕ ОСТОРОЖНЫ!!

Защитные очки не должны пропускать излучение с длиной волны 600-670нм (оптическая плотность 4+). Такие очки стоят не дешево, но глаза-то бесценны!

Оптическая плотность 4+ означает, фильтруется 10^-4 поступающего (красного) света.
К примеру:
300 мВт * 10 ^-4 = 0,03 мВт.

Распиновка лазерного диода:

Вынув лазерный диод из старого пишущего DVD или купив в интернете, первым делом нужно определиться с его полярностью. Я для этого взял две мозгобатарейки АА в корпусе, которые соответственно «+» и «-», и попробовал соединить их с лазерным диодом, пока он не засветился.

В корпусах таких лазерных диодов как aixiz расположен радиатор. Они зачастую поставляются с фокусирующей пластиковой линзой. Стеклянные линзы конечно лучше, так как дают на 10-20% больше полезной мощности.

Настройка мощности лазерного диода:

Перед тем как подключить лазер к цепи, нужно отрегулировать «мощность», которую он будет получать. Это легко сделать с помощью синего потенциометра.
Красный лазер из пишущего DVD может выдержать 300мВ (под нагрузкой — соответственно 300мА), но при этом я не знаю насколько его хватит.
Значит, если вы хотите увеличить срок его эксплуатации можно уменьшить поступающую на него мощность до 200мВ (под нагрузкой — 200мА).
И советую по возможности найти еще старый пишущий DVD, ведь вы же не хотите настраивать мощность лазерного диода на используемом в поделке лазерном модуле.

Звучит странно, но для этой настройки мы будем использовать эквивалент нагрузки, которую нужно поместить в цепь вместо реального лазерного диода. В таком случае можно постепенно увеличивать мощность, замеряя при этом напряжение, и не рискуя повредить «драгоценный» диод.
На фото вы можете видеть эту самую эквивалентную нагрузку, она симулирует красный лазер. А если у вас лазер синего цвета, то вам нужно использовать 6 диодов 1N4001.

Эквивалентная нагрузка для красного лазера — 4 диода 1N4001 и один резистор 1Ом.
для синего лазера — 6 диодов 1N4001 и один резистор 1Ом.

Опять же, берем макетку и последовательно соединяем диоды и резистор, на котором и замеряется напряжение. С какой стороны от диодов вы его поместить не важно. Мультиметр устанавливаем на 2000мВ и прикладываем щупы к выводам мозгорезистора . Далее к макетке подсоединяем провода от контактов драйвера лазера. Загружаем gcodesender,или тот терминал который вы используете, и соединяемся с микроконтроллером. Далее посылаем команду «М3» (включение шпинделя/лазера) и на мультиметре должны появиться показания.
Затем поворачиваем потенциометр по часовой стрелке, до получения нужного вам значения, например 300мВ. Это будет соответствовать тому, что будет поступать на лазерный диод.

CW = повысить напряжение
CCW = понизить напряжение
После этого посылаем команду «М5» для отключения лазера.

Фокусировка лазера:

Для фокусировки лазера я поворачивал линзу пока он не превратился в точку на стене, а потом попробовал зажечь спичку.
Чтобы «грубо» настроить фокус я наклеил на стол линейку и установил рядом лазер, так чтобы край его корпуса был на отметке 0мм. Далее перед лазером поместил лист черной бумаги и двигал его, пока он не загорелся. Возможно и вам нужно так «поиграть» с линзой и расстоянием листа.

Чистовую настройку фокусного расстояния я проводил подобным образом, но на этот раз я подсчитывал сколько времени потребуется на прожиг дырки в бумаге. Вот таким образом я и получил фокусное расстояние наиболее близкое к идеальному.

Шаг 15: Софт

Определение рабочей площади:

В редакторе Inkscape необходимо задать размеры рабочей площади. Для этого заходим «File» — «Document Properties (свойства документа)» и меняем страницу по вашим размерам.

Перед тем как приступить к гравировке нужно узнать одну вещь — как получить gcode для ваших узоров. Мой выбор это Inkscape с модифицированным Groover-м Gcodetools (Metalevel 8), который доступен на его странице .

Прежде чем создавать gcode узор нужно отзеркалить. Если вы хотите просто все выделить и отразить, то в Inkscape это может дать странный результат.
Поэтому перед отзеркаливанием выделяем все (сочетание клавиш Ctrl + a), объединяем в группу (Ctrl + g) и лишь потом отражаем (‘h’). После отзеркаливания разгруппировываем (Ctrl + Shift + g) и преобразуем в контур (Ctrl + Shift + c).

gcodetools нужно скопировать в «…\Inkscape\share\extensions».

А вот теперь для получения gcode нужно выполнить следующее:

1. Разгруппировать все объекты (возможно дважды)
2. Ctrl + a (select all) — Path — Object to path
3. Выбранное (selected all) — Extensions (расширения) — Laserengraver — Laser
4. В разделе «Preferences» (предпочтения) вытавьте выходную папку.
5. Важно! Переключитесь на вкладку «Laser»
6. Вводим нужную скорость. Ее можно позже перезаписать с помощью Gcodesender.
7. Вводим имя файла + .nc Далее нажимаем «Apply(применить)» и готово!
8. Запускаем Gcodesender, подключаемся к Arduino и загружаем.nc файл. При желании меняем скорость.
9. !!НАДЕВАЕМ ЗАЩИТНЫЕ ОЧКИ!!
10. Нажимаем «Print(печать)»

Шпаркалка по Inkscape

Действие Сочетание клавиш

Select all (выбрать все) Ctrl + A
Group (сгруппировать) Ctrl + G
Ungroup (разгруппировать) Shift + Ctrl + G
Mirror (horizontal) отразить горизонтально H
вертикально V
Convert object to path (конвертировать в контур) Shift + Ctrl + C
Align dialog (выровнять диалог) Shift + Ctrl + A
Fill / Stroke dialog (заполнить/заштриховать диалог) Shift + Ctrl + F

Шаг 16: Он ожил!!!

Некоторые их вырезанных или выгравированных работ.

Лазер из cd dvd привода своими руками

Для многих сборка подобного устройства для многих не секрет. Это наверно одно из того, что собираем.Лазер из дисковода своими руками . Он отличается от дешевых китайских указок, и прочего, тем что обладает определенной мощностью. Для его изготовления нам нужны только начальные азы,и cd или dvd привод .А если еще и пишущий, то мощность его гораздо больше.

Первое чем мы зададимся.Это как достать диод из привода .

Разбираем резак, вытаскиваем оптическую часть. Вот так выглядит эта часть резака:

Ценного там только выходная линза и два лазера. Теперь достаем самое главное - DVD лазер:

Прошу вашего внимания:

Пока вы еще не начали играть с новой игрушкой распишу-ка я вам технику безопасности. Лазер из DVD-RW привода относится к классу 3B, а значит он очень опасен для зрения ! Не направляйте луч в глаза и в зеркало! Даже глазом моргнуть не успеете, зрение станет значительно хуже! Парнишка на одном форуме засветил себе нечаянно, попал на несколько тысяч уёв. это ему считай повезло. сфокусированным лучом повредить зрение можно и со ста метров! Смотрите куда светите!

Можно ли испортить лазерный диод ? Можно! Даже очень просто. Стоит только превысить ток и диоду наступит конец. Причем доли микросекунд будет достаточно! Именно поэтому ЛД боятся статического электричества. Оберегайте ЛД от него! На самом деле ЛД не сгорает, просто рушится оптический резонатор внутри и ЛД превращается в обычный светодиод. Резонатор рушится не от тока , а от световой интенсивности, которая в свою очередь зависит от тока. Также надо быть внимательным к температуре. При охлаждении лазера , КПД его растет, и при том же токе интенсивность возрастает и может разрушить резонатор! Осторожнее! Еще его легко убить переходными процессами, возникающими при включении и выключении! От них стоит защититься.

Достаем лазер и сразу же тонкой жилой из многожильного провода обматываем ему ноги,чтобы электрически выводы ЛД были соединены. припаиваем к его ногам небольшой неполярный конденсатор на 0,1мкФ и полярный на 100мкФ и только потом снимаем жилу, которую намотали! Так мы спасем его от статики и переходных процессов, которые ЛД очень не любят!

Теперь время подумать о питании нашего лазера. Лазерный диод запитывается примерно от 3V и потребляет 200-400мА в зависимости от мощности(скорости привода). Лазер это не лампочка! Ни в коем случае не подсоединяйте его напрямую к батарейкам! Без ограничительного резистора его быстро убьют и 2 батарейки от лазерной указки! ЛД нелинейный элемент, поэтому питать его надо не напряжением, а током! то есть нужны токо ограничивающие элементы.

Вот так лазер выглядит изнутри:

И так. Нам теперь осталось запитать наш лазер. Рассмотрим несколько вариантов.

Первый вариант.

Тут будет ограничение тока резистором, как и обычного диода.


Сопротивление резистора определяется экспериментально, по току через ЛД. Следует остановиться на 200мА для 16х, дальше риск спалить больше. хотя мой ЛД и на 300мА работал прекрасно. для питания подойдут три любых аккумулятора на нужную емкость. Также удобно использовать аккумулятор от мобильного телефона.

Достоинства: простая конструкция, высокая надежность.

Недостатки: ток через ЛД постепенно падает. И толком не понятно когда конструкцию пора подзаряжать. Использование трех аккумуляторов усложняет конструкцию и неудобна зарядка.

Данную схему удобно размещать в китайском фонарике, где стоит батарея из трех ААА (мизинчиковых) батареек

В сборе будет следущее.


Два резистора по 1 Ому последовательно и два конденсатора.

Второй вариант.

Использование микросхемы LM317.


В этой схеме все гораздо сложнее, и она прекрасно подходит для стационарного варианта лазера! В драйвере используется микросхема LM317, которая включена стабилизатором тока. Драйвер поддерживает постоянный ток через ЛД независимо от питания(не меньше 7В) и температуры. Советую скачать даташит на эту микросхему и разобраться основательней, а так это лучший драйвер для дома!

Небольшой обзор лазерного модуля на 1,5 китайских ватта, но при этом дешевого.
Подойдет для установки на 3Д принтер любого типа, а также для самодельных конструкций

Установка элементарная: лазерный модуль устанавливается на печатную головку стяжками и подключается вместо вентилятора обдува.
Прошивку корректировать не требуется. Можно печатать с флешки.

Более подробная информация под катом

Приветствую! И сразу к делу))))

Давно хотел получить лазерный гравер с большой рабочей областью. Ну как большой - больше чем 3.5 на 3.5 мм (Neje, KKmoon и подобные Decaker). У данных китайских поделок ультрадешевой конструкции используется механика от старых компьютерных приводов, и соответственно отсутствует возможность модернизации.

Самое простое что может прийти в голову - это установка лазерного модуля на головку 3д принтера. Есть варианты для установки совместно с существующим хотэндом (), можно установить новую Х-каретку (держатель эффектора для косселя) вместо штатного.


Варианты питания драйвера лазерного модуля различные - можно питать от проводов нагревателя хотэнда, сигнал TTL при этом берется от вентилятора обдува модели. Если с минимальной переделкой - можно просто установить вместе с хотэндом, запитать от вентилятора (выставив его на 100%). Далее, фокусируем линзой в точку, вручную опускаем эффектор к столу (поднимаем стол к лазеру и т.п.), определяя высоту, в которой лазерный луч фокусируется в точку. Эта высота будет постоянная для последующей «печати», с поправкой на высоту материала. В указанном варианте не потребуется перепрошивка - все остается как есть и можно пользоваться принтером как принтером, только для гравера готовить G-code файлы через плагин.

Кстати, как вариант - можно собрать . Самый простой способ - использовать несколько отрезков конструкционного профиля, ролики, ремни. Вот есть , а вот тут - про для сборки кареток.
В качестве простейшей платы управления можно использовать Arduino Uno/Nano + CNC Shield, есть возможность купить оригинальную плату EleksMaker для совместимости с программным обеспечением типа Benbox (и по сути за недорого получить недорогую копию китайского гравера), а также ничто не мешает установить Arduino Mega+Ramps, и пользоваться работой с SD карты и управлением (дисплей+энкодер).
Все указанные компоненты недорогие и доступные.

В любом случае, самое главное - это найти и правильно подключить лазерный модуль.


Про мощные лазерные модули уже была речь на муське ( , и даже была статья про лазерный гравер ), при покупке обратите внимание, чтобы была возможность управления по TTL мощностью (либо купите отдельный драйвер с TTL для лазерного диода/модуля)
И имейте в виду, что в названии лазерного модуля, как правило, указывается желаемая китайцами мощность, достижимая только при 100% мощности. Средняя/рекомендуемая мощность обычно колеблется на уровне 50-60% от максимума. То есть, если вы отдали около $300 за модуль с 5500мВт, то у вас скорее всего будет около 3...3,5Вт для работы. При длительной работе на максимуме мощности китайские диоды быстро теряют свой ресурс (и дохнут).

Оставим мощные диодные модули для других публикаций, а вот про их дешевые аналоги пока не было публикаций на муське. Вообще, цель была до $25 получить недорогой модуль, но при этом способный гравировать на дереве/картоне и возможно даже резать тонкие материалы.
Сразу укажу варианты, которые попались мне на глаза.

Во-первых, всегда есть возможность разломать/попросить на запчасти старый DVD-RW привод, и изъять лазер. Обычно говорят искать со скоростями >16х, так как там используются лазеры чуть мощнее.
Это практически бесплатный вариант, подходящий, чтобы попробовать свои силы и посмотреть, что получится. Кстати, если разломать пару приводов, вы еще и получите механику для двух осей))))
Вот есть информация по подобному способу, разбирайте аккуратно, не повредите модуль, который боится статики.
Лазер из привода, как правило, способен гравировать картон и дерево. Для любителей - можно лопать шарики, зажигать спички. Питается от 1*3,7В аккумулятора либо от 5В (павербанк)

Во-вторых, можно купить совсем недорогие лазерные диоды, обычно продаются по несколько штук. Вот пример лазерными диодами с длиной волны 808nm излучения.
На корпусе три вывода, но используются два (минус на корпусе, слева - плюс).
Как для первого случая (лазер или DVD-RW привода), так и для второго - потребуется докупить корпус, линзу, а также для питания диода.

Есть хороший третий способ : это покупка недорогого модуля лазерного диода, в гильзе, с линзой.
Вот варианты на , на , на .
Они продаются, как сменные варианты (для апгрейда или ремонта) лазеров типа Neje/Kkmoon


Выглядят как гильза диаметром 12мм, высотой 45мм, с двумя контактами для питания диода. Модуль поставляется без драйвера и соответственно, потребуется спаять или купить драйвер. . В привел фото разобранного лазерного модуля


Так что, модуль поставляется с драйвером внутри, драйвер питается от напряжения 4.5В....5В., максимальная потребляемая мощность 1,5Вт (излучаемая соответственно меньше). TTL у данного драйвера нет. Есть два варианта управления - либо M106 S255 (MAX) затем M106 S0 (MIN), либо включением - выключением питания, что одно и тоже по сути. Второй вариант - заменить «родной» драйвер.

Несколько слов про драйверы. Питать лазерный диод требуется не напряжением, а током, в зависимости от тока он и будет сильнее или слабее излучать.
Вот простейшая схема питания для лазерных диодов из приводов.


Очень важен резистор, который подбирается последовательно диоду - он ограничивает ток на диоде.

Итак, взял на попробовать вот
Далее фото посылки и лазера. Пришло достаточно быстро после оплаты, примерно дней за 20. В декларации ни слова про лазеры (аксессуары)


Внутри посылки пакет с лазером, небольшой и легкий


Масса модуля всего 17-18 грамм


Размеры: диаметр 12мм…


… длина 45 мм


Кольцо с линзой можно выкрутить совсем. Вот на фото хорошо видно линзу и пружинку.


Если посмотреть в лазерный модуль со снятой линзой, то… мало чего можно увидеть. Только чип в корпусе.


Фото поближе


На обратной стороне провода зафиксированы термоклеем


Теперь фото дополнительных комплектующих для сборки.
Для первичной проверки был куплен драйвер на 300мА


и




Фотография лазера с радиатором


И они же в сборе


Общая масса сборки 65 грамм - это важно для подвижный частей будущей системы


Сравнение лазера на 1500 мВт с лазерным модулем на 300мВт


Для сравнения - диоды 300mW 808nm и радиатор для них

Параллельно проводил эксперименты с лотом
диоды

корпус с линзой






вот так выглядит диод, установленный в корпус


и сам диод


собранный радиатор с линзой


Итак, самый простой драйвер я приобрел просто для контроля работоспособности лазера. Он умеет питать лазер до 300мА (читай милливат 600....700), но полностью не раскрывает возможностей лазерного модуля.
Подойдет для питания самодельных лазерный модулей из DVD-RW. Если вы будете питать диоды из лазера или купленные 300мВт диоды, то нужно предварительно выставить минимальный ток питания.

Для начала скручиваем переменный резистор в минимальное положение (против часовой стрелки), подключаем вместо лазера резистор на 50...80 Ом и устанавливаем ток около 50мА.
Обязательно оставляйте в цепи мультиметр в режиме измерения тока. Потом будем также с лазером включать с мультиметром и контролировать.

Что касается лазерного модуля 1500мВт из обзора - то он идет уже с установленным драйвером, питать можно до 5В. Я сначала перестраховался и подал чуть меньше напряжение. На фото видно, что лазерный модуль начинает зажигаться и можно попробовать фокусировать его в точку


Итак, проверка пройдена.
Я использовал модуль DPS5005 для питания лазерного модуля и контроля тока/напряжения


Уже можно гравировать дерево, единственно - нужно подержать какое то время
Вот фото пробы с рук






Далее, можно выставить напряжение на рекомендуемые 4,5....5В


Ну и традиционно - спички зажигает, шарики лопает, останавливаться на этом не буду

Для дальнейших экспериментов использовал принтер Geeetech Me Creator со снятым экструдером. Был нарисован новый держатель на каретку, питание лазера было заведено отдельно.

3Д модель держателя на каретку


Скрин из слайсера 3д принтера


Внешний вид лазера, установленного на Х-каретку




Вид сверху.


Фото в процессе работы. Тяжело фотоаппаратом поймать точку - в специальных очках точка очень маленькая, порядка 0,1мм. Без защитных очков лучше на нее не смотреть.


Печатал штатно с SD-карты, без модификации прошивки


Простейший G-code по координатам был запущен с SD карты, чтобы проверить работоспособность идеи.




Узнать более подробно, что может 1,5Ваттный китайский лазер

Для подготовки изображений к гравировке рекомендую использовать
Вот меню плагина. В Z-offset пишите высоту на которой фокусируется ваш лазер. Управление идет командами M106/M107 через регулировку оборотов вентилятора.

Итак, данный лазерный модуль один из самых дешевых, и позволяет уложиться в $20.
Для того, чтобы раскрыть все возможности лазерного модуля, заказал токовый драйвер до 1500мВт и с TTL. Когда придет - разберу корпус модуля, хочу подключить в обход родного драйвера.

Ну и я хочу нарисовать новую каретку, чтобы одновременно был установлен экструдер и лазер.
А то не очень удобно перекидывать их.

В целом все. Идея интересная, хорошая, надеюсь многим подойдет, хотя бы попробовать свои силы.
Обзор понравился +51 +78

Понравилась статья? Поделитесь ей