Контакты

Функционирования систем обработки информации и управления. Автоматизированная система обработки информации и управления (асоиу). Вузы, где есть эта специальность

Автоматизированная система обработки информации (АСОИ) – это человеко-машинная система, которая обеспечивает сбор и обработку информации, необходимой для оптимизации управленческих решений в различных сферах деятельности и на различных иерархических уровнях. .Такими уровнями,являются государственная, отраслевая, территориальная автоматизированные системы управления, автоматизированные системы управления предприятиями и технологическими процессами.

Эффективность использования автоматизированных систем управления в значительной степени зависит от их совместимости на различных уровнях и функционального назначения.

Технической базой АСОИ является комплекс технических средств, который включает персональные, универсальные и малые ЭВМ; оборудование сбора, подготовки и предварительной обработки информации, средств связи и передачи информации; устройств тиражирования, комплектации и окончательной обработки информации, автоматизированного её сохранения и выдачи документа.

Совместимость автоматизированных систем обработки информации устанавливается по следующим признакам:

· организационная совместимость АСОИ разных уровней и

функционального назначения;

· техническая совместимость, предусматривающая автоматиче-

ское функционирование комплекса технических средств АСОИ разных уровней, включая обмен информацией и возможность совместного решения крупномасштабных задач;

· программная и математическая совместимость с использовани-

ем единых математических методов, моделей и алгоритмов в АСОИ разных уровней;

· информационная совместимость с использованием единой ба-

зы данных АСОИ разных уровней;

· лингвистическая совместимость – употребление одинаковых

научно-технических и экономических терминов, правил формализации естественных языков, включая методы сворачивания и разворачивания текстов.

Для эффективного использования АСОИ важное значение имеет математическое обеспечение – совокупность программ, процедур и правил, связанных с компонентами документации, которая позволяет использовать ЭВМ для решения различных задач с применением диалогового режима человек-машина

Кибернетизация научно-исследовательских работ является основным направлением развития технологии этого процесса, направленного на активизацию роли науки в общественном производстве.

Информационная совместимость различных уровней управления обеспечивается с помощью классификаторов технико-экономической информации, в которых объекты систематизируются по определенным классификационным группам, их признакам и кодовым обозначениям.

В Украине действует Единая государственная система стандартизации. Она находится в ведении Госстандарта, который обеспечивает разработку и утверждает классификаторы по единым методическим признакам, обеспечивая совместимость АСОИ различных рангов. Эти классификаторы делятся на общегосударственные, отраслевые, региональные и локальные.

Функционирование АСОИ дает возможность автоматизировать поиск информации, находящейся в базе данных исследовательской организации, а также решать на ЭВМ исследовательские задачи методом пакетной обработки.

Исследователь, как пользователь информацией, должен владеть методикой алгоритмизации и постановки задач для последующего их программирования и решения на ЭВМ специалистами других отраслей (программистами, сис- темотехниками и др.) .

Полный цикл обработки данных для научных исследований в АСОИ включает следующие этапы:

· сбор, передача и подготовка к введению в ЭВМ первичной информации

· введение, накопление и обработка полученной информации;

· введение и передача результатов обработки информации пользователю

Использование вычислительной техники в обработке экономической информации вносит существенные изменения в методику исследования финансово-хозяйственной деятельности предприятия, создает условия для повышения обоснованности, достоверности и качества рекомендаций науки.

Создание автоматизированного рабочего места (АРМ) научного работника позволяет решать задачи в регламентном и запросном режимах, контролировать результаты расчетов, вносить изменения в методику проведения исследований и получать многовариантные решения, создавать локальные сети, которые обеспечивают обмен данными в реальном масштабе времени между АРМ различного назначения.

Техническое обеспечение АРМ научного работника, как правило, включает двухуровневый вычислительный комплекс. На верхнем уровне – ЭВМ с быстродействующим процессором с большим объёмом оперативной и внешней памяти, на котором обрабатывается основной поток исследуемой информации, поступающей с персональных компьютеров (ПК) нижнего уровня, оборудованного периферийными устройствами. Полученные результаты поступают на ПК и позволяют последовательно контролировать весь процесс обработки данных, изменяя при этом значения отдельных параметров для получения наилучшего результата из возможных.

Общеотраслевыми руководящими указаниями придана юридическая сила документам на магнитной ленте и бумажном носителе, созданных вычислительной техникй. Этот документ должен быть подготовлен и размечен в соответствии с требованиями государственного стандарта и закодирован с учетом требований общегосударственного классификатора технико-экономической информации. Оператор, который подготовил этот документ, проставляет свой код и несет персональную ответственность за его достоверность.

За оригинал документа на магнитной ленте принимается первая по времени запись на ней, зафиксированная в установленном порядке.

Изменения в оригинал вносятся на основании специально составленного уведомления, которое содержит: наименование организации, которая создала оригинал документа; содержание изменений; указание на причины изменения; время внесения изменений; соответствующие подписи; штамп или печать организации, которая создала оригинал документа на магнитной ленте. Необходимо также тщательно проверять погашение (аннулирование) документа-оригинала, перезаписанного на магнитную ленту.

Машинограмма имеет юридическую силу, если она создана на бумажном носителе в печатной форме средствами вычислительной техники в соответствии с порядком, установленным дл технологического процесса обработки данных, и отвечает стандартам на унифицированные системы документации. Машинограмма., которая будет использована в учете, контроле и аудите хозяйственной деятельности предприятия должна содержать реквизиты организации, её создавшей, и необходимые формы засвидетельствования (подписи работников информационно-вычислительного центра, который контролирует достоверность выхода исходной информации, и работников бухгалтерии.

Машинограммы и первичные документы, на основании которых она создана, сохраняются на протяжении сроков, установленных для этих документов государственными архивными органами.

Информация, находящаяся на хранении в памяти ЭВМ, должна быть надежно защищена от несанкционированного доступа. Понятие защиты информации включает в себе как разработку и внедрение соответствующих средств и методов защиты, так и постоянное их использование. Необходимость защиты информации обусловлена централизацией сбора, хранения и обработки информации на вычислительных центрах коллективного пользования, что облегчает доступ к данным вследствие средств коммуникации с более мощными ЭВМ и более строгой государственной регламентации требований секретности, а также рыночными отношениями в ведении хозяйственной деятельности, когда возникает необходимость в сохранении коммерческой тайны.

Функционирование АСОИ основано на создании банков информации. Средства связи дают возможность сделать эти данные доступные для всех, кто имеет доступ к общей телефонной линии. Дальнейшее увеличение концентрации данных, наряду с их доступностью из-за наличия средств связи, повышает необходимость в защите информации.

Мощные ЭВМ создают условия для увеличения несанкционированного доступа к ресурсам ЭВМ, в процессе которого возможны: уничтожение информации с целью сокрытия фактов хищения материальных и финансовых ценностей; изменения фактических данных с различными преступными целями и т.д.

Защита информации осуществляется специальными службами вычислительных центров. Физическая защита охватывает технические средства, зал ЭВМ, линии связи и дистанционные терминалы, логическая – касается самих данных, прикладных программ и программного обеспечения операционных систем.

Функции специального сотрудника по защите информации предусматривает ответственность за конфедициальность данных и включает:

· ответственность за сохранение информационных файлов;

· борьбу с нарушителя защиты файлов;

· сообщение руководству о случаях нарушения защиты файлов;

· использование технических средств защиты вычислительных устройств, данных или программ в этих устройствах.

Средства защиты данных могут быть включены в системные пакеты программ, в прикладные системы путем имитации с помощью тестов различных вариантов исправления или хищения данных с целью осуществления противозаконных действий. Программы постоянно совершенствуются для защиты секретной информации, коммерческой тайны, интеллектуальной собственности.

Государственный комитет российской федерации

по высшему образованию

Нижегородский технический колледж

Лаборатория современного технического офисного оборудования

Учебное пособие

По специальности 2202

дисциплина

“Технические средства обработки информации”

Автоматизированные системы обработки информации и управления

Разработал: Шишанов Ю.А.

Утверждено на заседании

предметной комиссии

протокол №___ от ________19___г.

Председатель комиссии

_______________________________

г. Н. Новгород 2000г.

1. Введение............................................................................................................ 5

1.1. Понятие: информация и информатика. Воздействие средств информации на органы чувств. Виды компьютерной информации......................................... 5

2. Средства копирования и размножения................................................. 12

2.1. Электрографическое копирование.......................................................... 12

2.1.1. Основные принципы электрографического копирования........... 12

2.1.2. Принципы работы современных аналоговых копировальных аппаратов.......................................................................................................... 14

2.1.3. Плоскостной электрографический аппарат ЭП-12 Р2 (ЭРА-12РМ). 21

2.1.4. Портативная настольная копировальная машина "Canon" FC-2. 22

3. Настольная электронная типография. ПЭВМ, периферийное оборудование и программное обеспечение.............................................. 32

3.1. Устройства ввода.................................................................................... 32

3.1.1. Клавиатура, мышь. Назначение, устройство и принцип работы 32

3.1.2. Джойстик, световое перо, дигитайзер. Назначение, устройство и принцип работы................................................................................................ 35

3.1.3. Сканеры, типы сканеров и их технические характеристики. Назначение, состав и принцип работы............................................................ 37

3.2. Устройства вывода................................................................................. 45

3.2.1. Мониторы и их характеристики. Назначение, состав и принцип работы............................................................................................................... 45

3.2.2. Принтеры ударного действия....................................................... 55

3.2.3. Принтеры не ударного действия.................................................. 59

3.2.4. Термический принтер.................................................................... 64

3.2.5. Плоттеры........................................................................................ 65

4. Методы и средства мультимедиа............................................................ 67

4.1. Методы и средства мультимедиа.......................................................... 67

4.1.1. Понятие мультимедиа, мультимедийный РС............................... 67

4.1.2. Звуковая карта. Назначение, состав и принцип работы.............. 70

4.1.3. Аналого-цифровое преобразование............................................. 71

4.1.4. Кодирование звуковых данных. Характеристики модулей записи и воспроизведения............................................................................................... 72

4.1.5. Модуль синтезатора. Синтез звука на основе частотной модуляции, таблицы волн, физического моделирования и их характеристики................ 73

4.1.6. Объем памяти................................................................................. 79

4.1.7. Видео карта. Назначение, состав, и принцип работы по функциональной схеме..................................................................................... 84

4.1.8. Мультимедиа-ускорители............................................................. 90

5. Офисное оборудование.............................................................................. 92

5.1. Телевидение............................................................................................... 92

5.1.1. Телевизионные стандарты............................................................. 92

5.1.2. Упрощенная функциональная схема передатчик звука............... 98

5.1.3. Цветной кинескоп........................................................................ 104

5.1.4. Система телетекста....................................................................... 107

6. Кассетные видеомагнитофоны.............................................................. 115

6.1. Кассетные видеомагнитофоны “Электроника ВМ-12”...................... 115

6.1.1. Лентопротяжный механизм......................................................... 123

7. Телекоммуникационные средства связи............................................. 128

7.1. Факсимильная связь................................................................................ 128

7.1.1. Основные принципы факсимильной связи................................. 128

Занятие 1. Принцип работы современного факсимильного аппарата 131

7.2. Сотовые телефоны................................................................................ 137

7.2.1. Принципы построения сотовой сети........................................... 137

7.2.2. Сотовые телефоны....................................................................... 145

7.2.3. Организация сотовой сети связи................................................. 152

8. Пейджинговая связь................................................................................. 155

8.1. "История пейджинга"........................................................................... 155

8.2. "Характеристики радиосигнала".......................................................... 156

8.2.1. 16K0F1D...................................................................................... 156

8.2.2. "Основные протоколы пейджинговой связи"............................. 156

8.2.3. Протокол POCSAG..................................................................... 157

8.2.4. Протокол FLEX........................................................................... 157

8.2.5. Протокол ERMES........................................................................ 158

8.3. "Условное распространение радиоволн"............................................... 159

8.4. "Радиопейджинг в России".................................................................... 160

8.5. "Будущее пейджинговой связи".............................................................. 161

9. Телекоммуникационные средства связи............................................. 166

9.1. Локальные и глобальные вычислительные сети.................................... 166

9.1.1. Понятие: локальные и глобальные ВС....................................... 166

9.2. Топология сети....................................................................................... 169

9.2.1. Топология «звезда»..................................................................... 169

9.2.2. Кольцевая топология................................................................... 170

9.2.3. Шинная топология....................................................................... 171

9.3. Компоненты локальной сети................................................................. 172

Литература:

О. Колесниченко, И. Шишигин “Аппаратные средства РС” Дюссельдорф, Киев, Москва, С. Петербург.

Справочник пользователя. “Модемы”. Лань С. Петербург 1997 г

Бэрри Нанс. “Компьютерные сети” Бипом Москва 1996 г.

Г. Вачнадзе. “Всемирное телевидение” Тбилиси изд. “Ганатлеба” 1989 г.

В. Фигурнов “IBM PC для пользователя”. С. Петербург 1994 г.

А. Коцубинский, С. Грошев. “Современный самоучитель работы в сети Интернет” Изд. Триумф. Москва 1997 г.

Берри Пресс “Ремонт и модернизация ПК” Библия пользователя. Изд. Диалектика. Москва. С. Петербург, Киев. 1999 г.

А. Бобров “Копировальная техника”, Сервис «Ремонт и обслуживание», Выпуск 9, Изд. ДМК, Москва 1999г.

В. Поляков. “Посвящение в радиоэлектронику”. Изд. Радио и связь. Москва 1988г.

В. Джакония, А. Гоголь, Я. Друзин и др. Телевидение: учебник для вузов. – М.: Радио и связь, 1997.

В. Виноградов Уроки телемастера. Изд. 2. – С.-Пб.: ЛАНЬ, КОРОНА-ПРИНТ, 1997.

1.1. Понятие: информация и информатика. Воздействие средств информации на органы чувств . Виды компьютерной информации

Понятие: информация и информатика

Информация - (от латинского слова Informatio разъяснение, изложение). Первоначальные – сведения, передаваемые одними людьми другим людям устным, письменным или каким-либо другим способом (например, с помощью условных сигналов, с использованием технических средств и т. д.), а также сам процесс передачи или получения этих сведений.

Информатика , дисциплина, изучающая структуру и общие свойства научной информации, а также закономерности её создания, преобразования, передачи и использования в различных сферах человеческой деятельности.

Благодаря наличию у человека пяти органов чувств, информация об окружающей среде поступает к человеку постоянно. Больше всего информации дает зрение. Если глаза открыты, то через них поступает огромное количество информации о форме и цвете предметов, о том, где они находятся, и даже о том, как они двигаются.

Вывод:

¨ Вся информация, поступающая к человеку, состоит из сигналов.

¨ Человек эти сигналы получает, обрабатывает и либо исполняет, либо запоминает.

Воздействие средств информации на органы чувств.

Человек так устроен, что он защищается от ненужной, непонятной и неприятной информации. Она проходит мимо него. В этом случае человек не обрабатывает её, а значит, не может запомнить и превратить в знание.

Та информация, которая не может быть понята и усвоена, называется - информационным шумом.

Вывод:

1. Человеку трудно потреблять информацию. Он может делать это только очень маленькими порциями. Любая перегрузка превращается в информационный шум, и. она становиться бесполезной, то есть не превращается в знания.

2. Человеку трудно обработать информацию. От этого он устает.

3. Человек можем, ошибиться. Из-за информационного шума он можем неправильно обработать информацию и превратить её ложное знание.

4. Человек необъективен (т.е. воспринимает информацию не такой, какой она есть, а такой, какой она ему кажется). Если информация совпадает с его личным мнением, он принимает, обрабатывает и усваиваем её очень легко. Если информация ему неприятна, он усваивает ее с большим трудом и многое остается без внимания.

5. Человек не может долго хранить информацию. Если не закреплять знания постоянными упражнениями, информация очень быстро забывается.

Что же такое компьютер?

Компьютер - это электронная машина, которая может:

¨ Принимать информацию;

¨ Обрабатывать информацию;

¨ Хранить информацию;

¨ Выдавать информацию.

Как было ранее сказано, этими функциями обладает и человек. Однако делает он это медленно, иногда с ошибками и не всегда охотно. Компьютер освобождает нас от необходимости обрабатывать горы информации, но делает он быстро, безотказно, выдает в том виде, в котором удобно человеку, и хранит сколь угодно долго.

/ Автоматизированные системы обработки информации и управления (АСОИУ)

Информационные технологии (ИТ) занимают важное место во всех сферах жизни и деятельности человека. Особое место в многообразии ИТ занимают автоматизированные системы обработки информации и управления (АСОИУ), основное назначение которых - автоматизация деятельности, связанной с хранением, передачей и обработкой информации. Поскольку информация является в современном мире важнейшим ресурсом, то и АСОИУ играют определяющую роль в любой сфере деятельности (бухгалтерские, банковские, складские, административно-управленческие автоматизированные системы). Современные АСОИУ опираются на использование локальных и глобальных сетей, обработку графической, видео- и звуковой информации, технологии мультимедиа, систем искусственного интеллекта. Без такого рода систем трудно себе представить современное предприятие, независимо от размера и направления деятельности. Это во многом определяет существующий устойчивый спрос во всех отраслях экономики на специалистов в области проектирования, создания и использования АСОИУ. Этим также объясняется и большой интерес к этому направлению среди молодежи.

Специальность 230102 «Автоматизированные системы обработки информации и управления» - это специальность для тех, кто любит математику и программирование, хочет свободно владеть современными средствами вычислительной техники и программного обеспечения, сетевыми технологиями различного масштаба: от локальных до корпоративных и глобальных.

Данная специальность входит в общее направление подготовки 230000 «Информатика и вычислительная техника». Направление «Информатика и вычислительная техника» - это область науки и техники, которая включает в себя совокупность средств, способов и методов человеческой деятельности, направленных на создание и применение:

· ЭВМ, систем и сетей;

· автоматизированных систем обработки информации и управления;

· систем автоматизированного проектирования;

· программного обеспечения вычислительной техники и автоматизированных систем.

Инженер по направлению подготовки «Информатика и вычислительная техника» может выполнять следующие виды профессиональной деятельности :

Ø проектно-конструкторскую;

Ø производственно-технологическую;

Ø научно-исследовательскую;

Ø организационно-управленческую;

Ø эксплуатационную.

Основные дисциплины На младших курсах студенты изучают математику и физику, дающие базовые фундаментальные знания; информатику, программирование и информационные технологии, развивающие алгоритмическое мышление и навыки создания собственных программ; схемотехнику, дающую базовые знания об архитектуре ЭВМ и операционной системе и понимание того, что происходит внутри компьютера. На старших курсах изучаются технологии программирования, базы данных, сети, экспертные системы, различные среды программирования, методы теории систем и системного анализа, проектирование систем. Студенты получают углубленное образование в области системного анализа, математических методов обработки информации, методов научных исследований, проектирования информационных систем. Именно этот цикл превращает студентов из пользователей ЭВМ в высококвалифицированных специалистов, способных разрабатывать и совершенствовать современные информационные системы.

Все перечисленные дисциплины включают обязательное использование ЭВМ в лабораторных занятиях и самостоятельной работе студентов. По всем циклам дисциплин и особенно в специальных дисциплинах преподаватели, принимавшие участие и руководившие разработкой реальных сложных проектов автоматизированных систем, передают свой практический и теоретический опыт и знания студентам. Постоянно совершенствуется организация и содержание учебного процесса. Ежегодно вводятся новые разделы дисциплин и целые дисциплины, обновляется содержание лабораторных работ, изучается и включается в учебный процесс новое программное обеспечение.

Спрос на выпускников, окончивших эту специальность, увеличивается пропорционально росту компьютерного парка, т.к. уровень информатизации становится одним из существенных факторов развития общества.

Многие студенты факультета активно участвуют в кафедральных научных исследованиях , участвуют в научных конференциях.

Выпускники кафедры, с отличием закончившие обучение, могут поступить в

ВВЕДЕНИЕ

I. ОСНОВНЫЕ ПОНЯТИЯ УПРАВЛЕНИЯ И АВТОМАТИЗИРОВАННЫХ СИСТЕМ ОБРАБОТКИ ИНФОРМАЦИИ И УПРАВЛЕНИЯ

1.1. Основные понятия управления

1.2. Основные понятия автоматизированных систем обработки информации и управления

1.3. История развития автоматизированных систем обработки информации и управления

II. СТРУКТУРНАЯ СХЕМА АСОИУ

III. ФУНКЦИОНАЛЬНЫЕ ВОЗМОЖНОСТИ АВТОМАТИЗИРОВАННЫХ СИСТЕМ ОБРАБОТКИ ИНФОРМАЦИИ И УПРАВЛЕНИЯ

IV. МЕТОДИКА РАЗРАБОТКИ АСОИУ

V. ТРЕБОВАНИЯ, ПРЕДЪЯВЛЯЕМЫЕ ПРИ РАЗРАБОТКЕ АВТОМАТИЗИРОВАННЫХ СИСТЕМ ОБРАБОТКИ ИНФОРМАЦИИ И УПРАВЛЕНИЯ

VI. КЛАССЫ АВТОМАТИЗИРОВАННЫХ СИСТЕМ ОБРАБОТКИ ИНФОРМАЦИИ И УПРАВЛЕНИЯ

6.1. Классификация по типу решаемых задач

6.2. Классификация задач автоматизации управления по способу информационного обслуживания

6.3. Классификация задач автоматизации управления по принципу преобразования информации

VII. ИНФОРМАЦИОННЫЕ ПРОЦЕССЫ В АСОИУ

VIII. МЕТОДОЛОГИЧЕСКИЕ ПРЕДПОСЫЛКИ ПРОЕКТИРОВАНИЯ АСОИУ

IX. ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ АСОИУ

X. ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ АСОИУ

XI. МАТЕМАТИЧЕСКОЕ ОБЕСПЕЧЕНИЕ АСОИУ

XII. ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ АСОИУ

СПИСОК ЛИТЕРАТУРЫ

Специальность “Автоматизированные системы обработки информации и управления” утверждена приказом № 180 Государственного комитета Российской Федерации по высшему образованию от 3 марта 1994 года.

Автоматизированные системы обработки информации и управления (АСОИУ) - область науки и техники, которая включает широкую совокупность средств, способов и методов деятельности, направленной на разработку технического, информационного, программного, математического, лингвистического, эргономического, организационного и правового обеспечения названных систем, а также структуры систем в целом.

В соответствии с Государственным образовательным стандартом высшего профессионального образования специалист в области автоматизированных систем обработки информации и управления в соответствии с фундаментальной и специальной подготовкой может выполнять такие виды профессиональной деятельности, как проектирование, научные исследования, эксплуатация в данной области. Он должен знать и уметь использовать основные математические понятия и методы, математические модели процессов в естествознании и технике, вероятностные модели для анализа и количественных оценок конкретных процессов, базовые понятия информатики и вычислительной техники, закономерности протекания информационных процессов в системах управления, принципы работы технических и программных средств, основные приемы обработки экспериментальных данных.

С точки зрения общепрофессиональных дисциплин инженер в области автоматизированных систем должен иметь представление:

Об основных закономерностях функционирования систем и возможности их системного анализа;

О современных методах исследования, оптимизации и проектирования АСОИУ;

Об использовании основных положений теории управления в различных областях науки и техники;

О возможностях информационных технологий и их применении в промышленности, научных исследованиях, организационном управлении и других областях;

О современном состоянии и тенденциях развития архитектур ЭВМ, вычислительных систем и сетей, об архитектуре и о возможностях микропроцессорных средств;

О современных алгоритмических языках, о проблемах и направлениях развития технологии программирования, об основных методах и средствах автоматизации проектирования программного обеспечения, о методах организации работы в коллективах разработчиков программного обеспечения.

Специалист должен знать:

Качественные и количественные методы анализа систем, методы теоретико-множественного описания систем;

Основы системного подхода, формальный аппарат анализа и синтеза структур автоматизированных систем;

Основные классы моделей и методы моделирования, методы формализации, алгоритмизации и реализации моделей на ЭВМ;

Основные положения теории управления;

Принципы организации и функционирования отдельных устройств и ЭВМ в целом, комплексов и сетей ЭВМ, принципы построения архитектуры вычислительных систем;

Модели, методы и инструментальные средства, используемые в АСОИУ для решения интеллектуальных задач;

Принципы построения и методы разработки экспертных систем.

В итоге специалист должен уметь:

Формулировать и решать задачи проектирования АСОИУ с использованием информационных технологий;

Конструировать проектные решения и реализовывать их в заданной программной среде.

«Основные понятия управления автоматизированных систем обработки информации и управления»

Автоматизированные системы обработки информации и управления (АСОИУ) - область науки и техники, которая включает широкую совокупность средств, способов и методов деятельности, направленной на разработку технического, информационного, программного, математического, лингвистического, эргономического, организационного и правового обеспечения названных систем, а также структуры систем в целом.

В соответствии с Государственным образовательным стандартом высшего профессионального образования специалист в области автоматизированных систем обработки информации и управления в соответствии с фундаментальной и специальной подготовкой может выполнять такие виды профессиональной деятельности, как: проектирование, научные исследования, эксплуатация в данной области.

Он должен знать и уметь использовать основные математические понятия и методы, Математические модели процессов в естествознании и технике, вероятностные модели для анализа и количественных оценок конкретных процессов, базовые понятия информатики и вычислительной техники, закономерности протекания информационных процессов в системах управления, принципы работы технических и программных средств, основные приемы обработки экспериментальных данных.

С точки зрения общепрофессиональных дисциплин инженер в области автоматизированных систем должен иметь представление:

  • - об основных закономерностях функционирования систем и возможности их системного анализа;
  • - о современных методах исследования, оптимизации и проектирования АСОИУ;
  • - об использовании основных положений теории управления в различных областях науки и техники;

Под автоматизированной системой обработки информации и управления понимается совокупность экономико-математических методов, организационных мероприятий, информационных и технических средств, обеспечивающих сбор, передачу, обработку и представление результатов о деятельности какого-либо объекта, предприятия, подразделения.

  • - о возможностях информационных технологий и их применении в промышленности, научных исследованиях, организационном управлении и других областях;
  • - о современном состоянии и тенденциях развития архитектур ЭВМ, вычислительных систем и сетей, об архитектуре и о возможностях микропроцессорных средств;
  • - о современных алгоритмических языках, о проблемах и направлениях развития технологии программирования, об основных методах и средствах автоматизации проектирования программного обеспечения, о методах организации работы в коллективах разработчиков программного обеспечения.

Классифицировать информацию в АСОИУ можно по нескольким признакам.

По характеру изменения информацию можно классифицировать следующим образом:

  • · условно-постоянная, изменяющая свою количественную характеристику эпизодически;
  • · переменная, оперативно изменяющая свою количественную характеристику в процессе обработки.

Примером условно-постоянной информации являются плановые и нормативные показатели, цены, стоимость основных фондов.

Рассмотрим классификацию информации по способу использования в системе:

  • · входная информация,
  • · выходная информация.

Входную информацию представляют исходные документы. Вводимую информацию можно, в свою очередь, подразделить на базовую и текущую (оперативную). Базовая образуется на основе входной информации и хранится в течение всего времени функционирования АСОИУ, претерпевая коррекцию и пополнение в случае необходимости. В состав базовой входят плановые показатели работы управляемого процесса или объекта. Оперативная информация формируется на основе постоянно поступающих исходных данных и регулярно используется для обработки.

Качество управления всецело зависит от полноты и достоверности исходных данных.

Выходная информация есть результат логико-математической обработки базовой информации. Она представляется в виде документов, отражающих состояние управляемого процесса, и в виде команд, направляемых к исполнительным органам.

Помимо основной информации (баз данных), характеризующей решаемую задачу, к информационному обеспечению относится так называемая служебная информация: массивы справочной информации, словари, упрощающие процесс общения пользователя с системой, а также система кодирования информации.

Полезно рассмотреть понятие “данные” и способы их организации. С одной стороны, данные характеризуются реквизитами. В реквизите представлены две группы информации: основание и признаки. Основание связано с количественной оценкой. Примером основания являются цена, количество материала, итоговые показатели. Признаки выражают качественные свойства и характеризуют процессы, при которых получены: наименования материалов, работ, сорт, размер, склад хранения, дата поступления.

Данные могут быть представлены двояко:

  • * конкретными величинами - константами, не меняющими значения в процессе решения задачи;
  • * в обобщенном виде как переменные.

Переменная - это именованное данное, значение которого в процессе решения задачи либо при повторных ее решениях могут изменяться.

Обрабатываемые в ЭВМ данные различаются набором допустимых значений и видами операций, которые могут выполняться над ними. Эти две характеристики определяют тип данного. Различают числовые, символьные, логические и данные типа “дата”.

Числовые данные принимают числовые значения со знаком или без знака. Допустимые над числовыми данными операции, реализуемые в ЭВМ, можно разделить на две группы. Первую группу представляют арифметические операции: сложение, вычитание, умножение, деление, возведение в степень. Результатом их выполнения является число. Ко второй группе относятся операции сравнения двух величин (операции отношения): больше, больше или равно, меньше, меньше или равно, равно, не равно. Результатом их выполнения является логическое значение TRUE (истина), если условие выполняется, и FALSE (ложь) в противном случае.

Символьные данные принимают значения в виде последовательности любых символов.

Примечание. Обычно символьное данное выделяется специальными символами (например, `привет").

Допустимо выполнение следующих операций над символьными данными:

  • - операция сравнения “равно”, в результате выполнения которой формируется значение TRUE или FALSE;
  • - операция сцепления двух символьных данных в одно.

Логические данныепринимают одно из двух возможных значений (TRUE, FALSE).

Допустимые операции над логическими данными - это операции алгебры логики: отрицание, дизъюнкция, конъюнкция (см. раздел 3).

Данные типа “дата”принимают значения даты, представляемые в ЭВМ в виде ММ/ДД/ГГ или ДД/ММ/ГГ, где ММ - двузначный номер месяца в году, ДД - число, ГГ - две последние цифры года.

Допускается выполнение следующих операций над данными этого типа:

  • - арифметические - сложение, вычитание (к дате может быть добавлено или от даты вычтено целое число - количество дней), результатом выполнения которых является дата;
  • - операция сравнения двух дат, результатом выполнения которой, естественно, является логическое значение TRUE или FALSE.

Рассмотрим способы организации данных. Допускается организация данных в массивы, структуры, списки.

Программное обеспечение АСОИУ включает в себя системное программное обеспечение в виде операционной системы (ОС), прикладное программное обеспечение (например, системы управления базами данных, табличные процессоры), а также специализированное программное обеспечение, ориентированное на решение конкретного класса задач.

Под ОС понимается комплекс программ, поддерживающий функционирование ЭВМ, освобождающий пользователя от распределения ресурсов и контроля их использования с целью хранения данных и управления ими, оптимального выполнения параллельно нескольких задач (в том числе с учетом приоритета их выполнения), использования устройств ввода/вывода.

Различают следующие режимы обработки пользовательских программ: пакетный, режим диалога и режим реального времени. Последний, как указывалось выше, является режимом управления реальными процессами.

Как правило, автоматизированные системы обработки информации и управления представляют собой сложный комплекс параллельно действующих подсистем, занимающих определенное место в общей цепи управления. Сложные задачи целесообразным образом разлагаются на более мелкие подзадачи (“divide-and-concuer” - “разделяй и властвуй”). При этом выбор разложения на подзадачи - структурирование постановки задачи - является одним из важнейших шагов проектирования АСОИУ. Каждая подсистема имеет свою сферу управления с самостоятельными входами и выходами. Результаты решения задач одной подсистемы служат исходными данными или ограничениями для выполнения функций другой подсистемой.

В многоуровневых системах предусмотрены как вертикальные информационные связи, так и горизонтальные. По взаимодействию различают моноиерархические и полииерархические многоуровневые системы. В первых реализуются только радиальные линии передачи информации. На рис. 2 представлена структурная схема одноуровневой автоматизированной системы обработки информации и управления.

На следующих рисунках представлены структурные схемы многоуровневых автоматизированных систем обработки информации и управления. Они различаются характером линий связи источников информации с централизованным пунктом ее переработки. Различают радиальные (рис. 3), магистральные или цепочечные (рис. 4), древовидные (рис. 5) и иерархические, то есть смешанные структуры (рис. 6). С увеличением числа управляемых объектов усложняется и структура АСОИУ. Наиболее характерными становятся цепочечные и древовидные структуры. При цепочечной структуре подсистемы рассредоточены вдоль линии связи. Такой принцип построения характерен для транспортных и других систем.

При выборе структуры АСОИУ следует руководствоваться следующими принципами:

  • · минимизация числа ступеней иерархии и линий связи,
  • · обеспечение наиболее простых схем взаимодействия между элементами системы.

Но вместе с этим необходимо соблюдать условие полной самостоятельности каждой из подсистем.

На рис. 7 представлена более подробная структурная схема автоматизированной системы обработки информации и управления.


Рассмотрим существо каждой из составляющих.

Информационная база - это совокупность данных, а именно массивы обрабатываемой информации, словари и массивы справочной информации.

Программное обеспечение следует рассматривать как совокупность системного программного обеспечения, управляющего функционированием ЭВМ, прикладного программного обеспечения, реализующего процессы обработки текста, ведения баз данных, обработку табличной информации. Кроме того, каждая АСОИУ характеризуется специализированным программным обеспечением, реализующим процедуры управления.

Организационная составляющая объединяет людей, совместная деятельность которых на основе определенных правил и процедур направлена на достижение цели управления. Она регламентирует схему движения информации в системе, сроки представления информации в соответствии с сетевым графиком управления.

Математическое обеспечение базируется на теории автоматического управления и представляет собой совокупность математических методов и алгоритмов реализации задачи на ЭВМ.

Техническое обеспечение базируется в первую очередь на компьютерной технике, а также представлено телекоммуникационными средствами приема и передачи информации, аппаратурой сопряжения с линиями связи, средствами документирования информации, устройствами взаимодействия человека с ЭВМ.

К техническому обеспечению АСОИУ предъявляются следующие требования:

  • - обеспечение необходимой пропускной способности (время реакции на запрос пользователя не должно превышать двух-трех секунд);
  • - единство информационной базы всех пользователей системы с правом коллективного доступа к ней и обеспечение при этом защиты информации от несанкционированного доступа;
  • - интерактивный режим взаимодействия человека с системой;
  • - возможность развития системы;
  • - возможность работы в сети.

Методологическое обеспечение представлено документацией, отражающей состав и функционирование АСОИУ.

Рассмотрим основные функциональные возможности автоматизированных систем обработки информации и управления.

К ним относятся:

  • 1. Сбор информации.
  • 2. Обработка данных: проведение расчетов, сортировка информации.
  • 3. Поиск информации по стандартным запросам.
  • 4. Выдача справок по всем показателям, характеризующим обрабатываемую информацию.
  • 5. Формирование информационно-аналитических данных для принятия человеком решений, необходимых на различных этапах управления и планирования.

Автоматизированные системы обработки информации и управления - человеко-машинные системы. Человек участвует в принятии решений на основе анализа и оценки получаемой информации. АСОИУ всегда должны быть ориентированы на широкого пользователя (специалиста в своей профессиональной деятельности) и иметь диалоговый интерфейс, который предполагает реализацию следующих режимов:

  • · режима “вопрос - ответ” с инициативой задания вопросов за компьютером,
  • · широкое использование подсказок,
  • · предоставление пользователю различных меню с правом выбора одной из позиций.

Можно выделить три уровня общения человека с ЭВМ:

  • - логический,
  • - реляционный,
  • - уровень представления знаний.

Вопросами информации занимается специальная отрасль знания - теория информации, изучающая процессы, с помощью которых могут быть собраны и переданы соответствующие сведения по каналам связи. Информация при этом оценивается с помощью количественных признаков, как правило, без учета смысла передаваемой информации.

Основная проблема, возникающая при таком подходе к оценке информации, - создание наиболее эффективных форм передачи сведений при сохранении достоверности.

Информационное сообщение состоит из символов , задаваемых алфавитом из Мбукв и цифр. Если сообщение содержитNсимволов, то количество возможных различных состояний в этом сообщенииL=MN. При использовании двоичной системы счисления в качестве единицы информации используется бит - один двоичный разряд. Для измерения информации используется байт - восемь двоичных разрядов, достаточных для представления в двоичной системе счисления кодов всех символов используемого алфавита. Кодирование существенно сокращает общий объем используемой в системе информации и соответственно требуемой для ее хранения памяти.

Основные информационные процессы , характерные для АСОИУ можно сформулировать следующим образом:

Внедрение автоматизированных систем обработки информации и управления связано с проведением большого объема работ по изучению информационных потоков, формализации операций, унификации первичных документов, исключения их дублирования.

Анализируя информационные процессы, следует отметить в качестве одной из первых задач, решаемых при создании АСОИУ, типизацию документов, которая связана с выбором минимального количества показателей, из которых путем соответствующей обработки можно получить достаточную для достижения результата информацию.

В связи с многоуровневой системой АСОИУ возникает задача агрегирования информации, которая связана с иерархическим характером управления: для принятия решения на каждом уровне необходима различная информация. На высшем уровне имеют дело с обобщенной информацией, на нижних - с подробными показателями.

Анализ информационных потоков в АСОИУ показывает, что наряду с необходимой велика доля избыточной информации. Актуальной является задача выделения существенной информации и сокращения доли избыточной информации.

Под автоматизированной системой обработки информации и управления понимается совокупность экономико-математических методов, организационных мероприятий, информационных и технических средств, обеспечивающих сбор, передачу, обработку и представление результатов о деятельности какого-либо объекта, предприятия, подразделения.

Автоматизированные системы обработки информации и управления относятся к классу человеко-машинных систем, причем их развитие в каждой конкретной области применения идет по линии повышения роли ЭВМ как в сфере принятия решений, так и в сфере реализации принятых решений.

Предельный случай, когда ответственность как за принятые решения, так и за их выполнение возлагается на вычислительную машину, должен рассматриваться как отдельная сфера применения ЭВМ, а именно сфера автоматического управления в реальном масштабе времени. Чтобы обеспечить работу в реальном времени, соответствующие языки программирования и программы должны содержать зависящие от времени конструкции.

В этом случае ЭВМ используется в контуре обратной связи некоторой системы управления, то есть вмешательство человека в процесс управления полностью исключается.

Итак, следует отличать термины ”автоматизированный” и “автоматический”.

Понравилась статья? Поделитесь ей